Riverview Land Preserve

DRAFT 2024 State Revolving Fund Project Plan Leachate Treatment Plant

209-4231588 April 8, 2024

DRAFT

DRAFT Riverview Land Preserve 2024 State Revolving Fund Project Plan Leachate Treatment Plant

March 15, 2024 209-4231588

PRESENTED TO	PRESENTED BY	
Riverview Land Preserve 20863 Grange Road Riverview, MI 48193	Tetra Tech 39395 West 12 Mile Road Farmington Hills, MI 48331	P +1-877-294-9070 F +1-877-845-1456 tetratech.com/waste
Prepared by:		
Nicole Shanks, PE 3/15/2024 Project Manager		
Reviewed by:		
Eric Anderson 3/15/2024 Project Manager		
Authorized by:		
Jennifer Bowyer, PE 3/15/2024 Client Manager		
TETRA TECH		

1.0 INTRODUCTION	1-1
2.0 PROJECT BACKGROUND	
2.1 STUDY AND SERVICE AREAS POPULATION	
2.2 ENVIRONMENTAL SETTING	
2.2.1 Cultural Resources	
2.2.2 The Natural Environment	
2.2.3 Land Use in Study Area	
2.3 POPULATION DATA	
2.3.1 Economic Characteristics	
3.0 EXISTING FACILITIES	
3.1 LEACHATE GENERATION	
3.2 EXISTING LEACHATE TREATMENT PLANT	
3.3 NEED FOR THE PROJECT	
3.3.1 Consent Orders	
3.3.2 Water Quality Problems	
3.3.3 Compliance Status	
3.3.4 RLP LTP Performance and Condition	
3.3.5 Projected Needs	
3.3.6 Future Environment Without the Proposed Project	
4.0 ANALYSIS OF ALTERNATIVES	4-1
4.1 NO ACTION	
4.2 OPTIMUM PERFORMANCE OF EXISTING SYSTEM	
4.3 WATER AND ENERGY EFFICIENCY	
4.4 REGIONAL ALTERNATIVE	
4.5 ANALYSIS OF PRINCIPAL ALTERNATIVES	
4.6 PROCESS IMPROVEMENTS ALTERNATIVES EVALUATION	
4.6.1 Monetary Evaluation	
4.6.2 Environmental Evaluation	
4.6.3 Technical and Other Considerations	
5.0 SELECTED ALTERNATIVE	5-1
5.1 DESCRIPTION	
5.2 DESIGN PARAMETERS	
5.3 PROJECT MAPS	
5.4 SRF GREEN PROJECT RESERVE	

5.5 SPECIAL ASSESSMENT DISTRICT PROJECTS	5-3
5.6 SENSITIVE ECOSYSTEMS	5-3
5.7 CONTROLLING FACTORS	5-3
5.8 USEFUL LIFE	5-4
5.9 SCHEDULE OF DESIGN AND CONSTRUCTION	5-4
5.10 COST SUMMARY	5-5
5.11 SRF ELIGIBLE PROJECT FUNDING	5-5
5.12 IMPLEMENTABILITY	5-5
5.13 USER COSTS	5-5
5.14 DISADVANTAGED COMMUNITIES	5-6
6.0 ENVIRONMENTAL AND PUBLIC HEALTH IMPACTS	6-1
6.1 GENERAL	6-1
6.2 DIRECT IMPACTS	6-1
6.2.1 Historical and Archaeological Resources	6-1
6.2.2 Existing and Future Water Quality	6-1
6.2.3 Air Quality	
6.2.4 Natural Setting and Sensitive Ecosystems	6-1
6.2.5 Consumption of Materials	6-1
6.2.6 Human, Social and Economic Impacts	6-2
6.2.7 Operational Impacts	6-2
6.2.8 Other Impacts	
6.3 INDIRECT IMPACTS	6-2
6.3.1 Changes in Land Use	6-2
6.3.2 Changes in Air or Water Quality	6-2
6.3.3 Changes in the Natural Setting, Cultural, Human, Social and Economic Resources	6-2
6.3.4 Resource Consumption and Waste Generation	6-2
6.3.5 Other Impacts	6-3
6.3.6 Cumulative Impacts	6-3
7.0 MITIGATION	7-1
7.1 MITIGATION OF SHORT-TERM IMPACTS	7-1
7.1.1 Dust Control	7-1
7.1.2 Soil and Sediment Control	7-1
7.1.3 Noise Control	7-1
7.2 MITIGATION OF LONG-TERM IMPACTS	7-1

7.2.1 General Construction	7-1
7.2.2 Siting Decisions	7-1
7.2.3 Operational Impacts	7-2
7.3 MITIGATION OF INDIRECT IMPACTS	7-2
7.3.1 Master Plan and Zoning	7-2
7.3.2 Ordinances	7-2
7.3.3 Staging of Construction	7-2
8.0 PUBLIC PARTICIPATION	8-1
8.1 PUBLIC MEETING	8-1
8.2 FORMAL PUBLIC HEARING ON SELECTED ALTERNATIVE	8-1
8.2.1 Public Hearing Advertisement	8-1
8.2.2 Public Display	8-1
8.2.3 Public Hearing Transcript	8-1
8.2.4 Public Hearing Comments Received and Answered	8-1

LIST OF TABLES

Table 1 – 2020 Land Use Data for the Detroit Metro Area (SEMCOG, 2024)	
Table 2 - Detroit Metro Area Population 2020 through 2050 (SEMCOG, 2024)	
Table 3 - 2020 Occupations of Residents of the Detroit Metro Area (SEMCOG, 2024)	
Table 4 - Annual Average Leachate Discharge Volumes for all RLP Outfalls	
Table 5 - Human Non-cancer Values, Drinking Water for Five (5) PFAS (EGLE Rule 57,	October 12, 2023) 3-12
Table 6 - RLP Discharge Limitations and Typical Concentrations Ranges	
Table 7 - DUWA Effluent Data	
Table 8 - Cost Effective Analysis for Alternatives	
Table 9 - Environmental Impact of Alternatives	
Table 10 - Alternative Advantages and Disadvantages	
Table 11 - Alternative Ranking	
Table 12 – Proposed Project Schedule	
Table 13 - Opinion of Probable Costs	

LIST OF FIGURES

Figure 1 Location of the proposed Leachate Treatment Plant Upgrade and Expansion

Figure 2 Study/Service Area

Figure 3 Wetlands Map

Figure 4 Floodplain Map

Figure 5 Coastal Zones Map

Figure 6 City of Riverview Recreation Facilities

Figure 7 Topography Map

Figure 8 Soils Map Figure 9 Current Land Use Figure 10 2024 Leachate Collection System Figure 11 Current LTP Equipment Layout and Piping Plans Figure 12 Proposed Process Flow Diagram - GAC & Foam Fractionation Figure 13 Proposed Process Flow Diagram - GAC & IX Adsorption

Figure 14 Proposed Process Flow Diagram - Reverse Osmosis

APPENDICES

Appendix A: DUWA IPP PERMIT, RLP OPERATING LICENSE, DUWA VIOLATIONS Appendix B: OPINION OF PROBABLE COSTS Appendix C: CORRESPONDENCE Appendix D: PUBLIC HEARING

ACRONYMS/ABBREVIATIONS

Acronyms/Abbreviations	Definition
AST	Above-ground Storage Tank
BMP	Best Management Practices
cBOD	Carbonaceous Biochemical Oxygen Demand
City	City of Riverview
CFR	Code of Federal Regulations
CS	Condensate Sump
DAF	Dissolved Air Flotation
DUWA	Downriver Utility Wastewater Authority
EGLE	Michigan Department of the Environment, Great Lakes, and Energy
EQ	Equalization
FF	Foam Fractionation
GAC	Granulated Activated Carbon
GLWA	Great Lakes Water Authority
GPD	Gallons per Day
НМІ	Human-Machine Interface
IPP	Industrial Pre-treatment Program
IX	Ion Exchange
LFG	Landfill Gas
LFGTE	Landfill Gas-to-Energy
LTP	Leachate Treatment Plant
MNFI	Michigan Natural Features Inventory
MSA	Metropolitan Statistical Area
MSW	Municipal Solid Waste
NAAQS	National Ambient Air Quality Standards (NAAQS)
ND	Not Detected
NPDES	National Pollutant Discharge Elimination System
PCB	Poly-chlorinated biphenyl
Permit	Class D Wastewater Discharge Permit
PFAS	Poly- and perfluoroalkyl substances

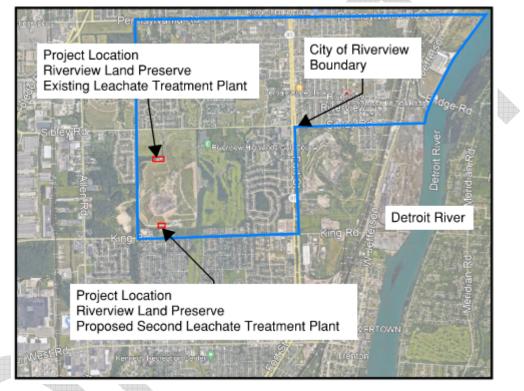
Acronyms/Abbreviations	Definition
PFBS	Perfluorobutane Sulfonate
PFHxS	Perfluorohexane Sulfonate
PFOA	Perfluorooctanoic Acid
PFOS	Perfluorooctane Sulfonic Acid
PLC	Programmable Logic Controller
PVC	Polyvinyl Chloride
RLP	Riverview Land Preserve
RNG	Renewable Natural Gas
RO	Reverse Osmosis
SEMCOG	Southeast Michigan Council of Governments
SESC	Soil and Sedimentation Control
SHPO	State Historic Preservation Office
SO2	Sulfur Dioxide
SRF	State Revolving Fund
SUO	Sewer Use Ordinance
THPO	Tribal Historic Preservation Office
TSS	Total Suspended Solids
ТОС	Total Organic Carbon
USEPA	United States Environmental Protection Agency
WWTP	Wastewater Treatment Plant

1.0 INTRODUCTION

The City of Riverview (City) owns and operates the Riverview Land Preserve (RLP), a Type II sanitary landfill located at 20863 Grange Road in the City of Riverview, Michigan. The RLP provides solid waste management solutions for communities in Wayne, Monroe, Oakland, Macomb, and Washtenaw counties in southeast Michigan as well as customers in Indiana and Canada. The RLP is currently licensed under provisions of Part 115, Solid Waste Management, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended, MCL 324.11501 et seq. (Part 115) for the operation of a municipal solid waste (MSW) landfill. The landfill has been in operation since 1968 and receives, on average, approximately 700,000 tons of permitted waste per year.

Leachate from the RLP is discharged to the Downriver Utility Wastewater Authority (DUWA) via sewer under an Industrial Pollution Prevention program (IPP) Class D Wastewater Discharge Permit (Permit) and subject to the limits therein. Presently, leachate for Outfall 003B is treated for PCB.

In October of 2018, the leachate was identified as a source for per- and polyfluoroalkyl substances (PFAS) contributing to the DUWA treatment plant and the City was directed DUWA to develop and implement a PFAS reduction plan. As a passive receiver of MSW that may contain PFAS, the RLP has limited control over the amounts of PFAS disposed at the landfill. The landfill has and continues to employ Best Management Practices (BMP) to reduce leachate generation.

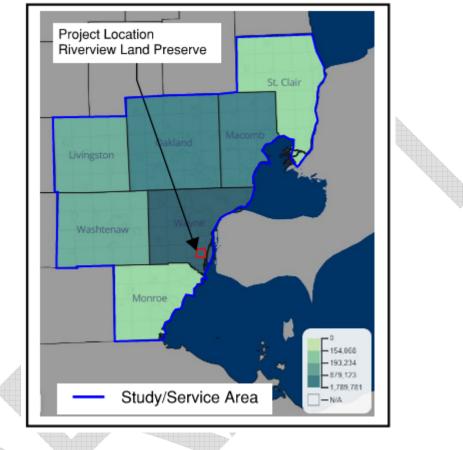

Periodic leachate sampling continues to show that the leachate contains PFAS above drinking water criteria established by EGLE in Rule 57. While there are currently no PFAS criteria established by DUWA for discharges, local limits are expected to be set according to federal and state regulation. The City is evaluating suitable technologies for pretreating leachate to meet the anticipated discharge limits economically.

This document has been prepared in accordance with Clean Water State Revolving Fund (SRF) Project Plan Preparation Guidance adopted by Michigan Department of Environment, Great Lakes, and Energy (EGLE) (Revision 1/2023) for the SRF low-interest loan program. City intends to seek low-interest loan assistance under the SRF program to build upgrades at the existing treatment plant location, and expand at a second location, to meet the impending PFAS discharge limits. The location of the existing leachate treatment plant (LTP) and that for the proposed expansion are shown in Figure 1 below.

2.0 PROJECT BACKGROUND

Geographic Area

The study and service area for this Project Plan is the RLP property, which is entirely contained within the DUWA service area. The RLP and LTP are in the City of Riverview. The property is bordered on the north by Sibley Road, on the south by King Road, on the east by the Riverview Highlands Golf Course, and on the west by undeveloped land and residential properties. The location of the existing LTP and the proposed expansion relative to the City of Riverview are depicted in Figure 1.


Figure 1: Location of the proposed Leachate Treatment Plant Upgrade and Expansion

The existing LTP is designed to reduce concentrations of poly-chlorinated biphenyl (PCB) compounds from leachate collected from the northwest portion of the landfill prior to discharge to the sanitary sewer at the approved Outfall 003-B. Two additional Outfall locations 004(SW) and 007 discharge directly into the sanitary system. The City has completed a preliminary engineering study of the existing LTP which determined that expansion of the facility is not economical and feasible because of constraints of the site, existing structure, and leachate conveyance within the property. Instead, expansion of treatment capacity will be provided through construction of a separate facility proximate to Outfalls 004(SW) and 007. The location of the expansion was selected due to the proximity to where the leachate is discharged from the landfill, ease of access and existing utilities from the former BioCNG Fueling Station location. Expanding at this location eliminates the need for a conveyance system to the existing LTP or to an outfall for discharge. The BioCNG Fueling Station was removed in January 2024, leaving the utility services for natural gas and electricity in place for future use.

2.1 STUDY AND SERVICE AREAS POPULATION

The RLP serves residents and commercial entities in the Detroit Metro Area located in southeast Michigan. The Greater Detroit Metro Area is home to 4.8 million people as of the 2020 census and comprised of the seven (7)

counties: Livingston, Macomb, Monroe, Oakland, St. Clair, Washtenaw, and Wayne. The study area is comprised of the RLP. The RLP does not accept leachate from other landfills or liquid wastes for disposal. Leachates collected and managed at other landfills within the Detroit MSA are not the subject of this study. The study/service area is shown in Figure 2.

Figure 2: Study and Service Area

2.2 ENVIRONMENTAL SETTING

This section is a synopsis of the environmental setting of the Project and provides an analysis of the potential environmental and public health impacts of the various alternatives.

2.2.1 Cultural Resources

The proposed project will not impact existing structures and facilities at the RLP. As the project location is entirely within the developed RLP property, it is not anticipated that historical or archaeological sites would be impacted. The RLP property was evaluated for the presence of archaeological and historical resources as part of the permitting process of the RLP. No sites were identified or documented to have cultural, historical, or archeological concerns. Should cultural resources be discovered during construction of the proposed upgrade and expansion, the RLP will immediately contact the State Historic Preservation Office (SHPO) and Tribal Historic Preservation Office (THPO) for guidance.

2.2.2 The Natural Environment

2.2.2.1 Climate

The climate in southeast Michigan is highly variable and is greatly influenced by the Great Lakes. Temperatures can be as high as 104°F in summer and as low as (-21)°F in the winter. Average temperatures in the summer range between 70°F and 42°F. Average winter temperatures range from 19° F to 37° F. Precipitation falls year-round, with snow being the main form of precipitation in the winter. Annual average precipitation is 34.3 inches.

2.2.2.2 Air Quality

National Ambient Air Quality Standards (NAAQS) are health-based standards set by the United States Environmental Protection Agency (USEPA). The entire State of Michigan is in attainment (meets regulations) for carbon dioxide, lead, nitrogen dioxide, and particulate matter. Although there are attainment areas within Michigan for ozone, the project property is within an attainment/maintenance area. This means the areas of the state that were previously classified as non-attainment but have since reduced their concentration levels below the NAAQS can be redesignated to attainment/maintenance and the state must continuing monitoring for up to 20 years. The project property is located in a sulfur dioxide (SO2) non-attainment area. The proposed project will not have negative impacts on air quality.

2.2.2.3 Wetlands

As shown on Figure 3, Wetlands Map, no wetlands were identified in the project areas for the LTP upgrade or expansion. An emergent freshwater wetland is adjacent to the study area for the LTP upgrade. However, this project will maintain the footprint area of the current LTP and utilize the existing developed area of the former BioCNG Fueling Station. It is not anticipated that this project will have any long-term impacts on area wetlands. The wetlands adjacent to the Leachate Facility will not be affected during the improvements.

2.2.2.4 Floodplains

As shown in Figure 4, there are no floodplains identified in the current LTP or proposed LTP expansion area. Although a floodplain is adjacent to the study area, this project is intended to maintain the same footprint area as the current LTP.

2.2.2.5 Coastal Zones/Great Lakes Shoreline

The proposed LTP upgrade and expansion will discharge into the surface water. As shown on Figure 5, the study area is not within a coastal zone. Because of its distance from the shorelines of the Great Lakes it will therefore have no direct impact on the Coastal Barrier Resources System.

2.2.2.6 Natural or Wild and Scenic Rivers

The Blakely Drain, in the southwest portion of the study area, flows north to south through the eastern portion of the Brownstown Township. The Frank and Poet Drain is on the east boundary of the study area, flowing north to south through the western portion of Riverview. These are both County-managed drains with year-round flow.

The Blakely and Frank and Poet Drains are not designated as State Natural Rivers under the Natural Rivers Program of the Land and Water Management Division of the Michigan Department of Natural Resources. Additionally, the Blakely, Frank and Poet Drains are not classified as a National Wild and Scenic River under the National Wild and Scenic Rivers System of the United States Fish and Wildlife Service.

2.2.2.7 Major Surface and Ground Waters

Major surface waters within the vicinity of the study area are the Detroit River and Lake Erie. The LTP and majority of the RLP are situated within the Frank and Poet Drain Subbasin while the western portion of the RLP lies within the Brownstown Creek subbasin. The Frank and Poet Drain Subbasin is part of the Frank and Poet subwatershed while the Brownstown Creek subbasin is part of the Blakely Drain subwatershed. The Frank and Poet Drain subwatershed occupies approximately 21.0 square miles. Brownstown Creek subwatershed occupies approximately 21.0 square miles. Brownstown Creek subwatershed along with the Detroit River South subwatershed. The RLP is entirely located within the Combined Downriver Watershed, a suburban watershed that occupies approximately 85.9 square miles in Wayne County.

The Combined Downriver Watershed management plan is available at:

https://www.allianceofdownriverwatersheds.com/wp-content/uploads/2014/09/combined_downriver_wmp.pdf

The Combined Downriver Watershed is a tributary of the Detroit River. The Detroit River is a 32-mile channel linking Lake St. Clair and the upper Great Lakes to Lake Erie. The Detroit River flows southerly and discharges into Lake Erie. The Detroit River is used for recreation and is the border to Canada.

In the glacial drift of the Detroit area, groundwater occurs under both water table and artesian conditions. In general, the drift consists of irregular beds of sand, silt, gravel, and clay which grade into each other laterally and vertically in relatively short distances. The area south and east of the old glacial-lake shoreline, where RLP is located, is predominantly clay with isolated terraces, beaches, and lenses of sand and gravel. Except for alluvial deposits there is little potential for developing significant groundwater resources within the old glacial lake.

Groundwater is found in a carbonate aquifer below the surficial clay at the site. The water is highly mineralized and is not a potable water source. The City's public water is supplied by Great Lakes Water Authority (GLWA).

2.2.2.8 Recreational Facilities

A map of the existing parks and recreational facilities in the City of Riverview is shown as Figure 6. The proposed project is not anticipated to impact the any recreational facilities.

2.2.2.9 Topography

The topography of the area is generally flat with little variation in elevations, ranging from 594 to 601 feet above sea level. The RLP provides the greatest elevation variation, with the highest point in the City of Riverview at 725 feet above sea level, at the RLP. Figure 7 shows a topographic map of the City of Riverview in the vicinity of the LTP.

2.2.2.10 Geology

The geological features at the RLP are consistent with the regional geologic setting. The RLP is situated in a glacial ground moraine consisting of fill containing an unsorted, unstratified mixture of clay, silt, sand, and coarser fragments deposited discontinuously by advancing glacial ice. The fill material overlies bedrock, ranging at depths from 20 to 65 feet below the surface. However, the 20-foot depths are misleading due to the fact that these borings were taken from a former borrow source in which a substantial portion of the overlying soils had been removed. The average depth of bedrock is approximately 45 feet.

Three (3) subsurface strata underlie the area (from top to bottom): the first layer contains stiff to very stiff gray silty clay. The second layer contains medium gray silty clay, and the third, or bottom, layer contains hard silty clay to bedrock. The bedrock is comprised of Dundee Limestone ranging in thickness from approximately 50 to 75 feet above the underlying Detroit River Dolomite.

2.2.2.11 Soils

A soils map for the RLP is provided in Figure 8. The formation of the soil structure took place during the glacial period, as a result of the grinding force of the glacial ice on the underlying bedrock. Soil associations within the City of Riverview typify these of the glacial lake plains with well-layered sedimentary deposits. All of the associations have nearly level to gently sloping, poorly drained to some-what drained and fine to moderately coarse textured clay soils. Individual soil profiles within most of the City have been disturbed as a result of urbanization and industrial activities.

2.2.2.12 Agricultural Resources

This proposed project will contribute to improving water quality by reducing PFAS discharges in the area served by DUWA and ultimately returned to the environment as available surface water. The PFAS removal system will not result in the development of any prime farmlands. The LTP site, where the proposed improvements will occur, is already developed and is not prime farmland.

2.2.2.13 Fauna and Flora

The study area is primarily urban and contains few animals with economic or sport value. The proposed project will be constructed in or adjacent to the existing LTP and at the former BioCNG Fueling Station location. The Michigan Natural Features Inventory (MNFI) for Wayne County was referenced for the existence of any rare, threatened, or endangered species along with U.S. Fish and Wildlife Service. The MNFI reference for Wayne County and the U.S. Fish and Wildlife Service Review are included in Appendix C.

A review of protected species was also made in February 2024, using the U.S. Fish and Wildlife Service's website for Endangered Species Section 7(a)(2) Consultation Process. Endangered species listed as having a presence in the project area are the Indiana Bat, Northern Long-eared Bat, Tricolored Bat, and Northern Riffleshell. Threatened species include the Rufa Red Knot, Eastern Massasauga and Monarch Butterfly. The Eastern Prairie Fringed Orchid is the only threatened flowering plant in the area. While these floras are present in the vicinity of the project, no critical habitats were identified at this location. The proposed activity for this project will not impact habitat outside the footprint of the landfill.

2.2.2.14 Unique Features

No other unique features, not previously described, are documented for the site.

2.2.3 Land Use in Study Area

The study area includes the Detroit Metro Area, which consists mainly of residential use, agricultural/rural residential, vacant and not parceled land. The residential, industrial, office and mixed use areas are scattered among the seven counties with the agricultural/rural residential along the outer perimeter sections as shown on Figure 9. Table 1 lists the Detroit Metro Area uses based on the most recent availably Southeast Michigan Council of Governments (SEMCOG) data for 2020.

Table 1 – 2020 Land Use Data for the Detroit Metro Area (SEMC	06 2024)
Table I - 2020 Land Use Data for the Detroit Metro Area (SEMO	00, 2024)

Category		Percent of Total
Single Family Residential	449,620.6	15.3%
Attached Condo Housing	16,080.8	0.5%
Multiple-Family Housing	23,969.3	0.8%

Category		Percent of Total
Mobile Home	14,272.4	0.5%
Agricultural/ Rural Residential	1,390,901.5	47.3%
Mixed Use	3,452.5	0.1%
Retail	32,899.1	1.1%
Office	21,646.2	0.7%
Hospitality	8,099.5	0.3%
Medical	8,805.8	0.3%
Institutional	53,650.2	1.8%
Industrial	71,551.9	2.4%
Recreational/Open Space	194,838	6.6%
Cemetery	7,399.5	0.3%
Golf Course	35,163.8	1.2%
Parking	4,087.2	0.1%
Extractive	15,163.5	0.5%
TCU	68,776.2	2.3%
Vacant	253,782.5	8.6%
Water	66,304.7	2.3%
Not Parceled	202,690	6.9%
TOTAL	2,943,155.3	100%

The SEMCOG website <u>https://www.semcog.org/community-profiles/communities</u> defines the intent of each land use category:

Agricultural/ Rural Residential Areas

Agricultural/ rural residential areas include any residential parcel containing 1 or more home where the parcel is 3 acres or larger.

Mixed Use

Mixed use areas include those parcels containing buildings with Hospitality, Retail, or Office square footage and housing units.

Not Parceled

Not parceled areas includes all areas within a community that are not covered by a parcel legal description.

2.3 POPULATION DATA

Between 2010 and 2022, the Detroit Metro Area population increase by 107,228. The Detroit Metro Area's population is expected to increase to 5,138,535 by 2050, assuming a 6.4% population growth rate (SEMCOG, 2024).

Year	Population	4
2020	12,4,830,489	
2030	4,904,007	
2040	5,075,897	
2050	5,138,535	

Table 2 - Detroit Metro A	rea Population 2	2020 through 2050	(SEMCOG. 2024)
			(=

2.3.1 Economic Characteristics

The three major occupations in the Detroit Metro Area include healthcare service; leisure and hospitality; and other services. These three main services account for over 50% of the occupations.

Table 3 – 2020 Occupations of Residents of the Detroit Metro Area (SEMCOG, 2024)

Visiti A. Visiti A.		
Occupation	Number of Jobs	Percent of Jobs
Natural Resources, Mining and Construction	128,984	4.8%
Manufacturing	231,832	8.6%
Wholesale Trade	93,552	3.5%
Retail Trade	241,412	9.0%
Transportation, Warehousing, and Utilities	154,420	5.7%
Information and Financial Activities	319,966	11.9%
Professional & Technical Services & Corporate HQ	349,556	13.0%
Administrative Support and Waste Services	175,461	6.5%
Education Services	179,527	6.7%
Healthcare Services	357,044	13.2%
Leisure and Hospitality	201,781	7.5%
Public Administration	160,865	6.0%
Other Services	100,936	3.7%
Total	2,695,336	100%

The Detroit Metro Area features comparatively higher rates of poverty, 13.3%. The Detroit Metro Area's median household income is \$73,354. Unlike surrounding communities, which have experienced a decrease in household income, Detroit Metro Area's median income has moderately increased by 2.9% between 2010 and 2022 (SEMCOG, 2024).

3.0 EXISTING FACILITIES

The RLP design meets or exceeds the minimum requirements of Michigan Public Act 451 (PA 451, 1992, as amended), Part 115 and operates in compliance with their operating license number 9600, dated May 7, 2020. A schematic of the current leachate collection, conveyance, and treatment system is provided on Figure 10. Copies of the RLP's Part 115 Operating License, DUWA IPP Permit, and recent Letters of Violation are presented in Appendix A.

3.1 LEACHATE GENERATION

Leachate is primarily composed of excess rainwater percolating through the waste and removed from the landfill via the leachate collection system.

Landfill Gas (LFG) extracted from the landfill is processed to produce Renewable Natural Gas (RNG). LFG is saturated with moisture, which is removed from the gas during collection and processing. Condensate from the LFG system is collected separately and hauled off-site for treatment and disposal. The LPT expansion will treat this volume of wastewater.

Total annual leachate and condensate collection ranges from 12.3 million gallons in 2015 to 32.0 million gallons in 2020, equivalent to 33,700 gallons per day (gpd) to 87,600 gpd. A total leachate generation of 116,000 gpd is estimated to be conservative, with an additional contingency added to the historic leachate generation. Outfall 003B typically represents approximately 48% of the total leachate flow, about 40,000 gpd. The RNG Plant has an estimated maximum condensate generation of 6,000 gpd and dewatering liquid (also condensate) contributes generally approximately 10,000 gpd, which are currently not discharged via Outfall 003B. These combined wastewater streams account for a total of 56,000 gpd. The data is based on monthly recorded flow volumes for the period of 2015 through 2020. Typical liquid collection rates for all three outfalls are summarized in Table 4 and represent the design basis for this project. Locations of the outfalls and LTP along with the leachate collection and conveyance systems are shown on Figure 11.

	Leachate	Dewatering	Condensate	Outfall Total
		Liquid		
Outfall 003B	40,000 gpd	10,000 gpd	6,000 gpd from RNG Plant	56,000 gpd
Outfall 004(SV	15,000 gpd	<u> </u>	-	15,000 gpd
Outfall 007	45,000 gpd	-	-	45,000 gpd
Total	100,000 gpd	10,000 gpd	6,000 gpd	116,000 gpd

Table 4 - Annual Average Leachate Discharge Volumes for all RLP Outfalls

3.2 EXISTING LEACHATE TREATMENT PLANT

The current LTP system is housed within a prefabricated, insulated structure located on the northwest corner of RLP. The structure has a poured concrete floor providing containment and floor drain that discharges to the condensate sump to the east of the LTP. The existing equipment layout and piping plan are shown in Figure 10 Equipment installed in the LTP is designed to reduce PCB concentrations to meet discharge requirements of the IPP using sedimentation, filtration, and adsorption on Granulated Activated Carbon (GAC). The equipment has a design capacity of 56,000 gpd. While the existing treatment process was not designed to reduce PFAS concentrations it has been shown to minimally lower PFAS levels in the effluent.

Leachate Collection and Conveyance

Three (3) existing pump stations (NE, NW, and SE) deliver leachate through a series of double-contained (4-inch within 8-inch sleeve) HDPE underground pipes to the LTP, where the transfer pipes daylight inside at the eastern side of the building. The individual pump station flows are measured by magnetic flow meters, equipped with totalizers, installed on each leachate transfer pipe within the LTP.

Within the facility the influent pipes are manifolded into a single pipe, which discharges into a 10,000-gallon equalization (EQ) tank. Flow equalization is important to wastewater treatment as it reduces extreme flow, introduces raw leachate at a regular rate to the treatment process, and balances constituent concentrations through mixing. The pipe manifold is also configured to allow bypass of the treatment system, and leachate can be directed to the two (2) 40,000-gallon Above-ground Storage Tanks (AST) outside the building. Liquid levels in the two ASTs are equalized by an 8-inch diameter pipe and they effectively act as one 80,000-gallon EQ tank. The floor drain located within the treatment plant disposes liquids to the ASTs via the condensate sump (CS-9).

Condensate Sump

Condensate is generally more heavily loaded with solids and other contaminants, which cannot be effectively handled in the GAC-adsorption treatment system. Condensate is kept separate from the leachate treatment and is disposed off site. Condensate is collected from Landfill Gas-to-Energy (LFGTE) plant directly into the two (2) 40,000-gallon ASTs. Condensate lift station CS-9 collects condensate from the landfill through sumps CS-11 and CS-12, and pumps into the ASTs for off-site disposal.

Process Control and Automation

Operation of the treatment system is controlled and monitored with a Programmable Logic Control (PLC) system. The Allen Bradley Compact Logix +1000 PLC, equipped with a Human-Machine Interface (HMI), monitors inputs from flow and pressure gages and controls pumps and actuated valves based on a predetermined logic program. Operational data is recorded, and alarms can be sent to the office if indicated based on operating parameters. The PLC interface can be accessed onsite via the HMI or accessed remotely via an internet connection to monitor or control the treatment system.

3.3 NEED FOR THE PROJECT

On September 17, 2021, DUWA revised the Industrial Pretreatment Program (IPP) (Appendix A) and included monitoring and reporting requirements for PFAS. Concurrently, the City was notified about DUWA's intent to set discharge limits for two (2) PFAS (PFOA and PFOS). In recent communication (August 8, 2023), DUWA referenced EGLE's updated Rule 57 limits for three (3) PFAS (PFOA, PFOS and PFBS) from September 26, 2022. As of October 12, 2023, EGLE has updated Rule 57 to include five (5) PFAS compounds (Table 5). While the existing treatment system has been shown to reduce PFAS concentrations, the reductions are not sufficient to meet the EGLE Rule 57 limits for PFAS which are anticipated to be included in the future permit and are liable to frequent changes. (It should be noted that the Rule 57 limits are for drinking water and may not directly correlate

to industrial wastewater permit limits. However, DUWA's effluent discharges to surface water which is used for a drinking water source and thus DUWA may impose a higher correlation to the Rule 57 limitations.)

PFAS	Limits
PFOS	11 ng/l
PFOA	66 ng/l
PFBS	8,300 ng/l
PFHxS	59 ng/l
PFNA	19 ng/l

Table 5 - Human Non-cancer Values, Drinking Water for Five (5) PFAS (EGLE Rule 57, October 12, 2023)

PFAS are a class of several thousand anthropogenic compounds that were initially developed in the 1940s and have found widespread use in industry, consumer products, food and personal care packaging, and manufacturing. Landfills have historically accepted waste containing PFAS and have limited control over the PFAS content in the incoming materials. Landfills are passive receivers of PFAS-containing waste, i.e., landfills do not produce or use PFAS. Yet the public, utilities, and regulators have identified landfills as a significant source with the potential to impact drinking water resources.

3.3.1 Consent Orders

The RLP discharges leachate at three (3) outfalls and monitors discharges in accordance with the IPP permit. Due to poly-chlorinated biphenyl (PCB) concentrations periodically exceeding permit limits from Outfall 003B, the RLP installed the LTP in 2015. The treatment process employs filtration and GAC to remove organic compounds from the leachate prior to discharge. Monitoring data demonstrates that the LTP meets permit requirements.

There are no current consent orders in effect. Historic effluent monitoring data indicates non-compliance violations of permit limits with respect to phenolics and mercury. A phenolics permit exceedance occurred at Outfall 003B during the sampling of discharge in March 2021 and July 2022. It was resolved with chemical treatment in the wastewater stream. A mercury permit exceedance also occurred at Outfall 003B in May 2023. Resampling did not confirm the presence of mercury. Exceedances of mercury are very rare and the last five (5) years of monitoring results at Outfall 003B all have been non-detect except for the above-referenced exceedance.

3.3.2 Water Quality Problems

The project is needed to address water quality requirements related to PFAS in the industrial discharges from the RLP. As indicated above, water quality incidents at RLP include sporadic elevated PCBs, mercury, phenolics, and now, as-yet unregulated PFAS in discharges to DUWA. The goal of this SRF loan application is to upgrade the existing system with new technology to consistently address these issues and to expand treatment capacity for currently untreated wastewater streams. The current wastewater exceeds anticipated effluent limits for PFOS, PFOA, PFHxS and PFNA. Permit limits for phenolics are met because of the existing treatment capability. To avoid future mercury (or heavy metals) impacts and to address PFAS, the treatment capabilities at the RLP must be expanded. In case of permit exceedances, DUWA or EGLE would initially issue Notices of Violations, followed by fines, schedule hearings, and eventually enter into an Administrative Consent Order requiring the RLP to achieve compliance within an agreed upon schedule.

3.3.3 Compliance Status

DUWA, in accordance with the provisions of Article IV, Section 4.02 of the DUWA Sewer Use Ordinance (SUO) and pursuant to the requirements of the Industrial Pretreatment Program as specified in 40 Code of Federal Regulations (CFR) 403.8(f), has permitted the RLP to discharge landfill leachate and maintenance facility process waters to the DUWA sanitary sewer system. Leachate is discharged in accordance with the discharge limits and monitoring requirements of IPP Permit No. D-10804, which was issued January 20, 2020, with revisions on May 13, October 23, and November 04, 2020, and January 15, and September 17, 2021. A copy of the most recent DUWA IPP permit is included in Appendix A.

3.3.4 RLP LTP Performance and Condition

The objective of effective leachate treatment is to reduce the concentrations of regulated constituents to levels below their respective discharge limitations, balancing capital and operating cost while considering treatment reliability and the ability to reasonably address changes to discharge limitations as environmental standards evolve.

The current DUWA IPP Permit specifies discharge limitations for six (6) constituents (phenols, PCB, mercury, phosphorus, cBOD₅, and TSS) and requires monitoring and reporting of four (4) compound groups: volatile and semi-volatile organic compounds, metals and PFAS. Discharge limitations and typical leachate discharge concentration ranges for each regulated compound are provided in Table 6 below. Concentrations greater than discharge limitations are **bold**.

	Units	Discharge Limitation	Outfall 003B	Outfall 004	Outfall 007
PFOS*	ng/l	11	236 – 590	25– 360	24 – 150
PFOA*	ng/l	66	54 – 3,900	65- 1,600	160 – 420
PFBS*	ng/l	8,300	45 – 3,700	54 – 2,700	8.8-180
PFHxS*	ng/l	59	58 -1,700	69-1,500	16 -240
PFNA*	ng/l	19	5.0 - 118	8.5 -114	8.0 -121
Phenolics, total	mg/l	1.0	<0.10 – 1.66	<0.10 – 2.28	<0.10 – 0.53
PCB, total	mg/l	<0.0002	<0.000093 – <0.0001	<0.000093 - <0.00011	<0.000094 - <0.0001
Mercury, total	mg/l	<0.0002	<0.00061	<0.0002	<0.0002
Phosphorus, total	mg/l	53.4	2.9 – 3.75	0.55 – 5.8	<1.2 – 3.7
cBOD₅	mg/l	2,200	73 – 945	75 – 2,079	62 – 109
TSS	mg/l	2,600	4 – 28	25 – 206	<2.5 - 10

Notesta and Anna and A		
Table 6 - RLP Discharge Li	imitations and Typical	Concentrations Ranges
TUDIC O TILL DISCHARGE	initiations and Typica	Concentrations Ranges

* Presumed discharge limitations based on EGLE Rule 57 (October 12, 2023)

The existing LTP equipment is functioning as intended but is not capable of meeting the EGLE Rule 57 limits which are anticipated impact the IPP permit in the near future. Furthermore, the LTP only services Outfall 003B. Overall water quality will be adversely affected if the existing process is not upgraded and expanded to Outfalls 004(SW) and 007.

	Units	Discharge Limitation	Effluent
PFOS*	ng/l	11	6.1- 59 **
PFOA*	ng/l	66	6.1 – 16**
PFBS*	ng/l	8,300	8.8***
PFHxS*	ng/l	59	5.6***
PFNA*	ng/l	19	<1.7***

* Presumed discharge limitations based on EGLE Rule 57 (October 12, 2023)

** Data from 2018 to 2023

*** Data from Feb. 2024

3.3.5 Projected Needs

The RLP will continue to operate within its currently licensed disposal area over the next 11 years until anticipated final closure in 2035. RLP is required to maintain the current leachate treatment system during that time, as well as throughout the 30-year post-closure period, per the Part 115 rules. The active portions of RLP includes seven cells designated as Cell 1 through Cell 7 (159.8 acres) and the closed portion, the Golf Practice Range (51.5 acres). Currently, Cells 4, 5 and 7 are receiving waste.

Total annual leachate collection ranged from 17.7 million gallons in 2022 to 32.8 million gallons in 2023, equivalent to 48,500 gallons per day (gpd) in 2022 to 89,800 gpd in 2023. Further increase in leachate volume is not anticipated, as portions of the RLP will be filled to grade and final cover will be installed as part of the final closure. Final cover is designed to prevent stormwater infiltration into the waste through use of a synthetic cover . Leachate production rates will decline asymptomatically to a steady long-term state during the 30-year post-closure period.

Over time, as the waste decomposes, the leachate chemistry changes. Typically, concentrations of indicator parameters such as ammonia, TKN, BOD and COD will reduce. Current bans on PFOA and PFOS in U.S.-made consumer goods may translate to long-term reduction in concentrations of these compounds in leachate. However, breakdown of wastes manufactured or landfilled prior to the ban may continue to release PFAS into the leachate. The fate and transport of PFAS within landfills is not well understood and is a subject of ongoing research.

The following design criteria were developed by the RLP as items to be addressed in the Project Plan:

- Utilize existing LTP processes and structures to the maximum extent possible.
- Implement efficient treatment technology.

- Optimize operation and maintenance costs.
- Optimize site layout.
- Coordinate with existing processes.
- Plan for reliable long-term function of the systems.
- Futureproofing to changes in discharge requirements, and.
- Cost effective construction and operation.

Three main technology alternatives with three treatment options were evaluated based on the opinion of probable construction cost, estimated annual operation cost, and present worth analysis.

3.3.6 Future Environment Without the Proposed Project

If the proposed leachate treatment system improvements are not implemented, RLP would not be able to comply with future effluent discharge limits for PFAS and other emerging contaminants which are expected to be included in the DUWA IPP Permit renewal and other related regulatory programs. Without the system improvements, PFAS compounds will continue to pass through the existing treatment, discharging to the DUWA sanitary sewer system and potentially endangering human health via direct and indirect exposure to PFAS compounds. If DUWA issues violation notices that limit or prevent landfill operations, leachate management would likely require hauling for disposal at significant cost and environmental risk. With anticipated widespread adoption of stringent discharge limitations, it will become progressively more challenging for the City to responsibly manage its leachate in a cost-effective and compliant manner.

4.0 ANALYSIS OF ALTERNATIVES

In accordance with EGLE's project plan guidance, this section describes potential alternatives to meet anticipated wastewater discharge limits. The federal and state regulations issued by EPA and EGLE are applied to the discharge from DUWA to the receiving water body. In order to meet the EPA and EGLE limitations, DUWA must manage their intake of wastewaters and emerging contaminants, which results in IPP restrictions and limitations on industrial users such as RLP.

4.1 NO ACTION

RLP recognizes the need to periodically make improvements at the LTP. The "No Action" alternative was considered but will not allow the RLP to address its current needs and could result in IPP Permit violations. The no-action alternative will likely result in future non-compliance and violations, or higher costs to implement treatment at a later date with a shorter timeline. Additionally, the impact to the environment and human health will continue to accumulate, which is inconsistent with current regulatory programs and environmental protection objectives.

"No action" is not considered a viable alternative and is not discussed in detail.

4.2 OPTIMUM PERFORMANCE OF EXISTING SYSTEM

The RLP is operating and maintaining the existing treatment system to comply with current permit requirements. However, the existing treatment system was not designed to remove PFAS. Upgrades are required for the current system to meet the anticipated PFAS discharge limitations. Optimizing operation of the existing treatment system in its current configuration cannot accomplish this objective.

4.3 WATER AND ENERGY EFFICIENCY

The considered upgrades and expansion alternatives were developed to meet anticipated discharge requirements, which will ultimately contribute to improving DUWA's discharge quality. The proposed approach increases efficiency by using a modular design. The modular approach places the proposed upgrades and expansion in proximity to existing leachate collection infrastructure and using existing pipe systems to reduce liquid transfers within the facility. Specifically, constructing the LTP expansion proximate to the active cells (4,5 and 7) with separate outfalls reduces capital and operating cost. The former BioCNG Fueling Station location, on the south side of RLP, is near the south active cells and has most of the required utilities already in place. . Furthermore, the considered treatment processes are physico-chemical processes that do not require maintaining biomass or continuity of treatment.

It should be noted that one considered alternative, i.e., reverse osmosis (RO), has been demonstrated to produce effluent suitable for direct discharge to a surface water body. Direct discharge can provide multiple benefits including improved surface water quality, reduced energy consumption by DUWA, and provide DUWA treatment capacity for other industrial users.

4.4 REGIONAL ALTERNATIVE

Regional leachate treatment for conventional pollutants is available at various local wastewater treatment plants (WWTPs) including the Great Lakes Water Authority (GLWA) and Trenton . RLP hauls condensate and off-spec leachate to an industrial wastewater treatment facility by Usher Oil at a significant cost, mostly incurred for transportation. Comprehensive onsite treatment will coalesce capital and operating expenses to provide high-

quality treatment while reducing traffic and associated pollution/emissions and minimizing the risk of uncontained spills off site.

A review of leachate management practices at the RLP compared no-action (continued hauling) and the development of on-site treatment solutions, culminated in the 2022 leachate treatability study. The study considered construction of a sewer to GLWA WWTP but was determined not to be economically viable due to distance and right-of-way issues. Hauling was, and continues to be, a viable regional disposal option, but at a significantly higher total cost than on-site treatment system. However, due to anticipated regulatory changes hauling may not be an option as more and more wastewater treatment facilities will implement PFAS reduction measures and require pre-treatment.

However, the recent focus on PFAS eliminates these other regional facilities as a leachate disposal option as they are not equipped to remove PFAS or are expected to impose similar restrictions on incoming wastewaters with high PFAS concentrations, such as leachate. Based on these considerations, a regional alternative for PFAS-containing hauled wastewater, including leachate, is a non-viable option and is not included as part of this project plan.

4.5 ANALYSIS OF PRINCIPAL ALTERNATIVES

The principal alternatives evaluated in this section focus on PFAS removal first, but with a view toward other emerging contaminants as well ("futureproofing"). The alternative options discussed below are also able to remove phenolics, PCBs and mercury during the leachate treatment, as required to meet the IPP Permit requirements.

PFAS molecules contain chains of carbon-fluorine (C-F) atoms of varying lengths and functional 'heads'. The strong C-F bond makes PFAS resilient to biological, chemical, and physical degradation and contributes to the desirable properties PFAS provide. These same properties make PFAS highly resistant to conventional biological and most physio-chemical treatment processes. Separation processes are presently the most effective means for reducing PFAS but result in concentrated PFAS residual. Destructive technologies are characterized by high energy consumption and are challenged by the relatively low concentrations of PFAS in raw leachate. Therefore, it is commercially more practical to utilize separation followed by destructive technology on the concentrated PFAS residual stream.

Separation processes take advantage of different physical properties of PFAS molecules, such as adsorption, hydrophobicity, and molecule size. The same properties are responsible for different treatment efficacies for shorter- and longer-chained PFAS molecules. In general, longer chains are more readily removed than short-chained PFAS. PFOS and PFOA are both considered long-chain PFAS while PFBS is considered short-chained.

Three physico-chemical treatment processes are presently considered viable for leachate treatment for PFAS:

- Adsorption using GAC and/or Ion Exchange (IX) resin.
- Hydrophobicity capture using Foam Fractionation (FF); and,
- Molecule size capture using Reverse Osmosis (RO).

Leachate evaporation is not considered a viable option for the RLP due to the Gas Rights Agreement the City has entered with a third-party developer. As a result, LFG is not available for use in leachate evaporation and the combined revenue from the sale of brown gas and environmental attributes is of greater value to RLP than the use of LFG for leachate evaporation.

Based on the needs identified from the evaluation of the LTP, the following project Alternatives are proposed for consideration:

• Alternative A. LTP Improvements and New LTP with GAC & Foam Fractionation Treatment

TETRA TECH

- Alternative B. LTP Improvements and New LTP with GAC & IX Adsorption Treatment
- Alternative C. LTP Improvements and New LTP with Reverse Osmosis Treatment

Each alternative is pre-engineered and self-contained. For each alternative, two (2) LTP locations are proposed: (1) upgrading the existing LTP and (2) construction of a new LTP at the former BioCNG Fueling Station. Each LTP location will have a capacity of 50,000 gpd for a total capacity of 100,000 gpd. In all cases, treatment of residuals, or residuals management, includes off-site disposal.

Alternative A. LTP Improvements and New LTP with GAC & Foam Fractionation Treatment

PFAS are surfactants with hydrophilic (water-attracted) and hydrophobic (water-repellent) tails. As such they readily align around air bubbles and accumulate as a foam which can be skimmed off, collapsed, and stored in a separate vessel. Foam fractionation has limited to no effect on 'conventional' leachate constituents. While it may reduce the concentration of volatile compounds the effect is not advertised by vendors or guaranteed. Foam fractionation is usually set up with cascading units to progressively separate and concentrate and PFAS from the leachate.

Foam fractionation would be used to remove PFAS but would need to be augmented with GAC and filtration/clarifiers to treat for conventional leachate constituents of concern (including PCBs). Figure 12 is a process flow diagram for Alternative A.

The existing LTP includes a GAC system. The upgrades to the existing LTP would include addition of foam fractionation and filtration. The proposed equipment will fit within the existing LTP building, and the existing storage tanks will be converted to equalization (EQ) tanks upstream of the existing LTP. The existing GAC system would continue to be utilized but reconfigured. The new LTP would require site preparation, new concrete foundation and building/enclosure, new EQ tank, new GAC, and new foam fractionation equipment.

System operation will require a part-time operator as most activities will be required on a periodic schedule. Daily inspection, performance checks, and routine maintenance for both sites are expected to require less than half of one day. The following skills and experience would be required to operate and maintain the treatment system:

- Experience with chemical dosing systems, including operation and maintenance of pumps and replacement of chemical supplies.
- Perform tests to periodically determine optimal chemical dosing .
- Sample collection, lab coordination, and ability to understand and interpret lab results.
- Coordinate and supervise media replacement.
- Perform plumbing maintenance and repair.
- Document and record system performance, maintenance, and repairs; and,
- Communicate system status, performance, and any issues to management.

Alternative B. LTP Improvements and New LTP with GAC & IX Adsorption Treatment

In adsorptive processes, molecules become attached to surfactants by intermolecular forces when in close proximity. Adsorptive media include activated carbon (GAC), ion exchange (IX) resins, clays, and certain polymers. Molecules present in the leachate 'compete' for adsorption sites on the media. Once all sites are occupied, the spent media loses its ability to remove compounds. Adsorption is a non-selective process and is driven by the strength of the intermolecular forces. Stronger bond-forming molecules and those present in larger numbers will outpace less-numerous molecules and those forming weaker bonds with the adsorptive media. To increase adsorption efficiency, most media have large specific surface areas and small pores. The latter can

readily clog, obscure adsorption sites, and reduce the effective efficacy of the medium. Therefore, the selection of adsorption media is critical.

To more effectively remove PFAS from leachate, pre-treatment is required to reduce the concentrations of suspended solids (TSS) and organic carbon (TOC). TSS can "blind" the media while the TOC outcompetes PFAS for adsorption. Pre-treatment generally consists of coagulation and flocculation followed by sedimentation/settlement or dissolved air flotation and skimming (DAF).

Adsorption creates two waste products: (i) spent media, and (ii) sludge:

- Spent Media: the amount and frequency of media change out is dependent on the leachate treatment flow rate, pre-treatment efficacy, and contaminant concentration. Adsorbed contaminants will not be readily desorbed from the media, which can be disposed of in MSW landfills or re-activated by suppliers for reuse; and,
- Sludge: a semi-solid, high water content material consisting of conditioning chemicals used in the pretreatment process. The material will have a low solid content and comprise about 2% to 3% of the treatment leachate volume. The material should be suitable for disposal at the landfill (if dewatered) or to an offsite location, e.g., DUWA, for dewatering and disposal.

Alternate B would consist of pre-treatment units for the removal of solids and two (2) trains of adsorption vessels: GAC followed by IX Resin. Figure 13 is a process flow diagram for Alternative B. GAC is effective at removing long-chained PFAS whereas IX Resin is more effective for short-chained PFAS; both are needed for complete and effective PFAS removal. Each train will consist of at least two GAC and two IX Resin vessels, vessels to be in a lead/lag configuration. The number of vessels in each train may be increased to optimize utilization of the existing treatment building. The lead vessel in each train would receive the influent until testing indicates that breakthrough is imminent, . At which point the roles of the vessels will be reserved and a media exchange scheduled.

The existing LTP has a GAC system. The upgrades to the existing LTP would include addition of IX Resin vessels. The equipment will fit within the existing LTP building, and the existing storage tanks will be converted to EQ tanks upstream of the existing LTP. The existing GAC system would continue to be utilized but reconfigured. The new LTP would require site preparation, new concrete foundation and building/enclosure, new EQ tank, new GAC, and IX Resin equipment.

System operation will require a part-time operator as most activities will be required on a periodic schedule. Daily inspection, performance checks, and routine maintenance are expected to require less than half of one day. The following skills and experience would be required to operate and maintain the treatment system:

- Experience with chemical dosing systems, including operation and maintenance of pumps and replacement of chemical supplies.
- Perform tests to periodically determine optimal chemical dosing .
- Sample collection, lab coordination, and ability to understand and interpret lab results.
- Coordinate and supervise media replacement.
- Perform plumbing maintenance and repair.
- Document and record system performance, maintenance, and repairs; and,
- Communicate system status, performance, and any issues to management.

Alternative C. LTP Improvements and New LTP with RO Treatment

RO is a physical form of treatment that removes contaminants by forcing water molecules through a semipermeable membrane. Liquid is forced through the semi-permeable membrane through the use of pressure. The semi-permeable membrane has small apertures (pores), which prevent molecules larger than the pore size from passing through the membrane. These larger molecules are "rejected" and removed from the stream. This reject stream contains the concentrated contaminants, and the volume is dependent upon the contaminants in the influent and the size of the pores of the membrane. The "clean" water molecules are discharged as effluent to the receiving body (sewer, stream, etc.)

RO is a non-selective form of treatment. Separation of contaminants is based solely on the size of molecules and is irrespective of chemical composition. RO has been shown to effectively treat PFAS, with typical removal over 99%, RO is effective at treating both short-chained and long-chained PFAS but tends to have higher efficiency the longer the PFAS chain. (PFOA and PFOS are long-chained PFAS compounds while PFBS is a short-chained PFAS compound.) RO has also been shown to effectively treat conventional leachate constituents including PCBs, phenolics and mercury, other metals and solids, with removal up to 99%. Laboratory testing on these constituents is typically reported as non-detect, or below the detection limit. With this Alternative, additional treatment units would not be added to achieve the anticipated IPP Permit and EGLE Rule 57 limits for PFAS.

RO produces permeate, which is the water and molecules that pass through the semi-permeable membrane, and reject, consisting of the contaminants which did not pass through the membrane. Generally, about 10% of the influent volume is reject depending on site-specific liquid makeup. The reject must be properly managed and disposed. Reject can be reinjected into the waste mass or hauled offsite for disposal.

An RO treatment system would consist of a pre-treatment unit, including a filtration unit, for the removal of larger solids prior to treatment through the membranes, and an RO membrane unit. A polishing carbon filter could be added after treatment through the RO membranes if needed. Figure 14 is a process flow diagram for Alternative C.

The existing LTP has a GAC system. The upgrades to the existing LTP would include removal of the four (4) existing GAC vessels, repurposing the existing smaller treatment storage tanks, addition of RO equipment and conversion of the existing AST to EQ tanks upstream of the existing LTP. A majority of the RO equipment will fit within the existing LTP building, with potential need for storage tank(s) to be located outside. If equipment is located outside, concrete foundation and an overhang will be installed. The new LTP would require site preparation, new concrete foundation and building/enclosure, equalization tank(s) and new RO equipment.

System operation will require a part-time operator as most activities will be required on a periodic schedule. Daily inspection, performance checks, and routine maintenance is expected to require less than half of one day. The following skills and experience would be required to operate and maintain the treatment system:

- Experience with chemical dosing systems, including operation and maintenance of pumps and replacement of chemical supplies.
- Perform tests to periodically determine optimal chemical dosing .
- Sample collection, lab coordination, and ability to understand and interpret lab results.
- Coordinate and supervise media replacement.
- Perform plumbing maintenance and repair.
- Document and record system performance, maintenance, and repairs; and,
- Communicate system status, performance, and any issues to management.

4.6 PROCESS IMPROVEMENTS ALTERNATIVES EVALUATION

4.6.1 Monetary Evaluation

A present-worth analysis has been completed for the principal alternatives as shown in Table 7. Detailed cost estimates are included in Appendix B. The actual engineering and construction cost would be the result of competitive bidding. The analysis assumed the following:

- Capital Costs: equipment, building, site improvements, delivery and construction, mobilization and demobilization, survey, soil erosion and sediment control and general conditions/contractor overhead costs.
- Salvage Value: equipment components will have useful life of 20 years and structural components 40 years. No equipment salvage is included in cost.
- Operation and Maintenance costs are based on the anticipated flow rate of 100,000 gpd total.
- Planning Period: 20 years
- Present Worth of O&M (cost to operate and maintain the system) at 0.3% for 20 years.
- Present Worth Factor for Salvage Value: Not Applicable

 Table 8 - Cost Effective Analysis for Alternatives

Description	Alternative A (GAC & Foam)	Alternative B (GAC and IX)	Alternative C (RO)
Capital Costs	\$8,801,959	\$5,307,965	\$11,614,002
Annual Operation and Maintenance (O&M)	\$1,638,800	\$1,791,205	\$1,391,940
Future Salvage Value	\$0	\$0	\$0
Present Worth of O&M	\$31,743,557	\$34,695,654	\$26,961,891
Present Worth of Salvage Value	\$0	\$0	\$0
Total Present Worth	\$28,386,247	\$26,713,558	\$28,397,977

4.6.2 Environmental Evaluation

Table 8 summaries the impacts of the principal on the environment

Table 9 - Environmental Impact of Alternatives

Environmental	Impacts
Cultural Resources	No impact
Climate	No impact
Air Quality	Minimal impact during construction from equipment

Environmental	Impacts
Wetlands	No impact
Coastal Zones	No impact
Floodplains	No impact
Natural or Wild and Scenic Rivers	No impact
Major Surface Waters	No impact, soil erosion control measures will be in place to mitigate impact from construction.
Recreational Facilities	No impact
Topography	Excavation required; area will be restored after construction to existing grades.
Geology	No impact
Soils	Excavation required
Agricultural Resources	No impact
Fauna and Flora	No Impact, No Trees will be removed to accommodate new facilities or expansions.

4.6.3 Technical and Other Considerations

Table 9 and 10 summarizes the advantages and disadvantages of each alternative and offer a ranking based on environmental, cost, technical, and other issues. Scoring is based on 1 being the least desirable and 3 being the most desirable; a higher score is a better product.

Category	Advantages	Disadvantages
No Action	No capital costs	 Violations of DUWA IPP Permit PFAS Limit Cost of leachate hauling and disposal
Alternative A. LTP Improvements and New LTP with GAC & Foam Fractionation Treatment	• System treats a much wider range of contaminants.	 Not as efficient/reliable at treating contaminants as RO. Foam fractionation only treats PFAS. Higher amount of residuals (spent media and floc) requiring off-site disposal. Requires discharge to DUWA Sewer System Highest Present Worth and O&M costs

Table 10 - Alternative Advantages and Disadvantages

Category	Advantages	Disadvantages
Alternative B. LTP Improvements and New LTP with GAC & IX Adsorption Treatment	Lowest Present Worth	 Large maintenance effort Complicated system to operate. Higher amount of residuals (spent media) and floc. Requires discharge to DUWA Sewer System
Alternative C. LTP Improvements and New LTP with Reverse Osmosis Treatment	 System treats effectively a much wider range of contaminants and potential future contaminants. Simple and reliable operational system Residuals can be recirculated into the landfill. Can discharge to open waters with NDPES Permit Lowest O&M Costs 	Concentrate disposal costs.

Table 11 - Alternative Ranking

Item	Category	No Action	Alternative A. GAC & Foam Fractionation Treatment	Alternative B. GAC & IX Adsorption Treatment	Alternative C. Reverse Osmosis Treatment
1.	Short Term Environmental Impacts	3	3	3	3
2.	Long Term Environmental Impacts	1	2	2	3
3.	Mitigation of Environmental Impacts	3	3	3	3
4.	Reliability	1	3	2	3
5.	Implementation	3	2	2	3
6.	Infrastructure Improvements	1	3	3	3
7.	Growth Capacity	1	3	3	3
8.	Annual Costs	2	2	2	2
9.	Operation & Maintenance	1	3	3	2
10.	Water Quality	1	3	2	3
11.	Emergency Redundancy	1	2	2	2

TE TETRA TECH

ltem	Category	No Action	Alternative A. GAC & Foam Fractionation Treatment	Alternative B. GAC & IX Adsorption Treatment	Alternative C. Reverse Osmosis Treatment
12.	Probability of Success	1	3	2	3
	Totals (higher is better)	19	32	29	33

5.0 SELECTED ALTERNATIVE

5.1 DESCRIPTION

The selected PFAS Leachate Treatment approach for the RLP is Alternative C, Improvements with Reverse Osmosis Treatment at Existing LTP and Proposed New LTP on the south side of the RLP property. The LTP design will meet the existing DUWA IPP permit requirements (Appendix A). In addition, the system will be designed to meet EGLE's pending administrative consent order to address water quality issues related to PFAS (particularly PFOA and PFOS), and potential, intermittent non-compliance events with phenolics and mercury.

These improvements will provide the existing LTP and new LTP with combined design capacity for 100,000 gallons per day. Alternative C was selected based on the present worth cost, the construction implementation of the project, and the ability of the system to effectively treat a much wider range of contaminants and potential future contaminants than the other alternatives.

5.1.1.1 Condensate

Condensate generated from the RNG plant will be collected and conveyed to the existing LTP to be upgraded. The condensate and leachate from Outfall 003B will be mixed in the EQ tanks (existing ASTs) prior to treatment through the LTP.

5.1.1.2 Programmable Logic Control (PLC)

The existing treatment system is monitored through a hardwired control system that provides alerts to operators of potential errors or alarms. The existing Allen Bradley Compact Logix with a Panel View +1000 PLC receives electronic signals from various monitoring devices and these inputs are used to perform tasks such as operating pumps and valves. The PLC interface can be accessed via the onsite internet connection and has the ability to be operated remotely. The PLC will control liquid levels in tanks within the LTP with leachate fed from three (3) pump stations located at the Site. The existing PLC has been determined to have the capacity to incorporate additional inputs from proposed equipment.

The new LTP will have a new PLC installed to control the operation of the new LTP.

5.1.1.3 Chemical Addition Process

A chemical dosing system for sulfuric acid will be necessary at both the existing and new LTP as a pre-treatment to the RO system. Sulfuric acid will be dosed prior to treatment to adjust the pH. The chemical dosing system will combine the following components: storage tank, pump, piping, valves, and level gauges. For purposes of this evaluation, a computerized chemical feed and control system has been selected. This type of system is programmed to feed chemicals based on pH measurements of the influent leachate. An alarm system will be programmed into the PLC to alert on pump status, high and low tank levels, and unusual operating conditions.

One (1) 1,000-gallon acid storage tank will be placed inside each LTP. Each tank will contain approximately two (2) months of chemical supply during expected flows through the LTP.

5.1.1.4 Pre-treatment System

The converted EQ tanks and new influent pump station will feed into the pre-treatment system in the existing LTP to be upgraded. A new EQ tank with an approximate capacity of 100,000 gallons and an influent pump station will be installed to feed the new LTP. Each LTP's pre-treatment system will consist of a sediment filter to remove larger solid particles and a carbon filter for optimal performance and prevent damage to the membranes.

5.1.1.5 RO System

The pre-treatment systems will feed into the RO system. At each LTP, the RO is comprised of two (2) RO treatment skids which facilitate installation and portability of the system. The first skid in the system will house a two (2)-pass RO system, consisting of a first stage and a permeate stage. All the influent feed into the RO system will pass through the first stage. In first-stage, liquid will either be rejected or passed through the membrane. The liquid that passes through the first-stage membranes will then be fed through the second, "permeate" stage for additional contaminant removal. Discharge from the permeate stage, is the "clean" permeate (liquid that passes through the membranes of the permeate stage) will meet the DUWA IPP Permit requirements and will be discharged. Reject from the permeate stage will be returned to the feed of the first stage.

The second RO skid will mount a high-pressure RO system. Reject from the first stage will be directed through the high-pressure skid for further concentration, forming a recirculation configuration. The final reject from the high-pressure stage will be sent to a 3,000-gallon residual storage tank for holding prior to disposal. Liquid that passes through the membranes (permeate) of the high-pressure stage will be returned to the feed to the first stage.

In addition to EQ tanks, there will be four (4) storage tanks required to operate each RO system: one (1) 6,000gallon feed and pH adjustment tank, one (1) 5,000 gallon permeate storage tank, one (1) 3,000-gallon residual storage tank, and one (1) 1,000-gallon recirculation tank. Additional support tanks will be required: one (1) 1,000gallon acid storage vessel, one (1) 3,000 gallon permeate degassifier, two (2) cleaning chemicals storage tanks. Equipment to operate the LTP includes a computer system for process control; pump skids for transfer, feed, and recirculation; metering pumps with secondary containment.

5.1.1.6 Solids Management Tank - 6,000-gallon

The existing 6,000 cone-bottomed tank will be utilized as an intermediate storage tank to equalize flows between the lamella filter and the RO system.

5.1.1.7 LTP Treated Effluent

Leachate treated by RO Systems as proposed for the RLP can meet direct discharge criteria. It is proposed to modify the RLP's NPDES permit to facility discharge to surface waters within one (1) year of commissioning of the treatment systems. The RLP will retain the ability to discharge to DUWA and via tanker as contingency options.

5.1.1.8 Site Improvements

Site improvements including modifications to the existing leachate treatment conveyance and treatment system would need to be made to accommodate the installation of an RO system. Modifications include conversion of the existing ASTs into equalization tanks to feed the treatment plant and removal of the existing equipment within the LTP.

Currently, treated leachate from Outfall 003B can be conveyed either directly to the DUWA sewer or to the two (2) on site ASTs. Each AST is 40,000 gallons for a total storage volume of 80,000 gallons, approximately a day and half of leachate and condensate storage. The ASTs have an offloading area to fill tanker trucks for hauling leachate off-site as needed. Currently, liquid from the ASTs cannot be directed to the existing treatment plant. The Plan proposes to convert these ASTs into EQ tanks upstream of treatment. Providing equalization will allow the concentrations of the incoming liquid streams to mix and equalize to prevent highly variable conditions through the plant and provide a more consistent influent and thus consistent treatment results from the plant. The existing ASTs already have an equalization pipe between the tanks. Mixing is achieved by pumped liquid entering at the bottom of the tanks. If additional mixing within the EQ tanks is required, a mixing system can be added. The pipes will be reversed to have the EQ tanks feed the treatment plant, which may require new piping

from the tanks to the treatment plant. See the attached Site Plan for concept layout for the pump station and influent piping to the tanks and from the EQ tanks to the treatment plant.

Modifications to the existing LTP will be required to include all equipment inside the structure with the exception of the tanks. Additionally, the construction of a complete new LTP facility will include some earthwork and site preparation at the location of the former BioCNG Fueling Station.

5.2 DESIGN PARAMETERS

Based on the analyses and evaluation presented in Section 4, RLP selected Alternative C, reverse osmosis treatment, as the preferred leachate treatment option. The system design will meet the existing DUWA IPP Permit requirements (see Appendix A). In addition, the system will be designed to meet EGLE's pending administrative consent order to address water quality issues related to PFAS (particularly PFOA and PFOS), and intermittent non-compliance events with phenolics and mercury. This proposed RO treatment has the ability to reasonably address changes to discharge limitations as environmental standards evolve.

Alternative C minimizes additional space needed at the existing LTP for operation and also produces the smallest amount of residuals. If NPDES on-site direct discharge to surface water permit requirements are met, the effluent could be discharged to surface water on-site. This is a substantial savings of \$500,000 per year.

The improvement implementation plan shall require that the leachate be hauled away during construction caused by interruptions in service equipment is replaced and reconfigured. As much as possible, the duration of interruption in treatment will be minimized.

5.3 PROJECT MAPS

The location of the existing LTP and proposed new LTP facility are shown in Figure 1 above.

5.4 SRF GREEN PROJECT RESERVE

SRF Green Project Reserve funding is not applicable to this project.

5.5 SPECIAL ASSESSMENT DISTRICT PROJECTS

Special Assessment District funding is not applicable to this project.

5.6 SENSITIVE ECOSYSTEMS

Work will take place on already developed landfill property and will be isolated from potential sensitive environmental locations. It will be necessary to provide BMP soil and sedimentation control during construction when earthwork is occurring. Noise and dust must be controlled to protect neighbors and the environment.

Environmental impacts will be minor and temporary as they are construction related. Mitigation measures will be required as part of construction contracts and as required by RLP Housekeeping measures in the Operating Plan. Permits (along with related agency reviews) will be obtained during the design process.

5.7 CONTROLLING FACTORS

The controlling factors are to ensure continued reliable operation of the LTP by addressing the needs of the unit processes and by installing the best available cost-effective technology. The proposed project is geared toward

meeting PFAS limits imposed due to the potential future EGLE Rule 57 requirements, as presented in previous sections of this plan.

The DUWA IPP Permit does not contain any court orders, nor are there any local health department findings or directives that influence the design.

The permits required for construction of this alternative include:

- Soil Erosion and Sedimentation Control will fall under the existing RLP permit.
- Building permit, to be obtained from the local (City) building inspector, along with local electrical, plumbing, and mechanical permits.

5.8 USEFUL LIFE

The useful life of the SRF Project Plan components was calculated for each proposed project and can be found in Appendix B. The following assumptions were made regarding the useful life of the assets:

- Site work and piping were assigned a useful life of 40 years.
- The structures and support were assigned a useful life of 40 years.
- Process, mechanical, and electrical assets were assigned a useful life of 20 years.

The asset life was multiplied by the cost of the asset to develop a calculated life value for each asset type. The sum of the calculated life values was divided by the sum of the asset costs for each project. The weighted average useful life is approximately 26 years.

5.9 SCHEDULE OF DESIGN AND CONSTRUCTION

The proposed project schedule is summarized in Table 11 below. Milestone dates are based on the EGLE and MFA FY2025 Financing Schedule and project milestones.

Task Description	Proposed Date
Intent to Apply	10/23/2023
City Authorizes Project Plan Preparation	1/2/2024
Project Plan/EGLE Meeting	4/4/2024
Publish Notice of Public Hearing	4/9/2024
Hold Public Hearing for Project Plan	4/25/2024
Submit Project Plan and CWSRF Scoring Criteria	5/1/2024 *
Advertise RFP for QBS Design	5/6/2024
Design Begins w/ QBS Consultant	5/21/2024
Final Project Priority List Published	8/16/2024 *
Design Complete	9/2/2024

Table 12 - Proposed Project Schedule

Task Description	Proposed Date				
Bid Ad Published	9/16/2024 *				
EGLE Order of Approval	11/18/2024 *				
SRF Bonds Sold	11/18/2024 – 12/31/2024				
MFA Pre-Closing	11/29/2024 *				
MFA Closing	12/13/2024 *				
Notice of Award To Contractor	2/10/2025				
Construction Notice To Proceed	2/17/2025				
Complete Construction	7/31/2025				

* - Indicates EGLE/MFA milestone from FY2025 Financing Schedule

5.10 COST SUMMARY

Table 12 below summarizes Alternative C leachate treatment system costs. The total cost presented below includes engineering and contingency allowances. Our opinion of probable cost for the associated items are detailed in Appendix B.

Table	13 - Opinior	n of Probable Costs	

Item	Opinion of Probable Cost
RO Treatment System Equipment , Start-up, and Training	\$ 4,616,800
LTP Expansion Overhand and New LTP	\$916,263
Leachate Disposal During Construction	\$431,760
Pump Station and Piping for New LTP	\$110,000
Pump Skids, Permeate Degassifier, Chemical Storage Tanks	\$4,087,780
Total Project Cost	\$11,614,003

5.11 SRF ELIGIBLE PROJECT FUNDING

All items included in the project are believed eligible for funding under the Michigan SRF program.

5.12 IMPLEMENTABILITY

The landfill is owned by the City of Riverview. The Landfill was constructed and opened in 1968. RLP and the City of Riverview have the authority to operate and implement the selected alternative.

5.13 USER COSTS

Once the proposed leachate treatment alternative is approved, RLP will explore numerous funding options for this project to include grants, loans and/or other financial mechanisms, as it is anticipated that a blended funding

approach is needed. As the Owner, the City of Riverview will manage the selection of any funding mechanism(s) and associated user costs.

5.14 DISADVANTAGED COMMUNITIES

Neither RLP nor the City of Riverview are eligible for the benefits awarded to disadvantaged communities under the SRF Project Plan.

6.0 ENVIRONMENTAL AND PUBLIC HEALTH IMPACTS

6.1 GENERAL

The proposed project was evaluated for the potential beneficial and detrimental environmental effects. The project was evaluated for short-term and long-term, and irreversible or irretrievable impacts, whether these impacts are direct, indirect, or cumulative.

6.2 DIRECT IMPACTS

Direct impacts are environmental impacts directly attributed to the construction and operation of the project. The proposed project was evaluated for several different areas of potential direct impact. The results of the evaluation are presented below.

6.2.1 Historical and Archaeological Resources

As stated earlier in this report, historical Environmental Assessments indicate that there are no known archaeological or architectural sites in the project area.

6.2.2 Existing and Future Water Quality

The project will have a beneficial overall impact to the surface water, as the LTP will be complying with discharge limits. Short term indirect impacts on water quality are possible. Appropriate measures will be taken during construction to avoid detrimental impact to surface waters through soil erosion and sedimentation controls. Proper precautions shall be taken during construction to deal with flows from subsurface dewatering at the site. This will include sedimentation basins and discharge point monitoring. All necessary permits will be obtained prior to the proposed activities. There are no impacts anticipated to the local groundwater.

6.2.3 Air Quality

There will be minimal short-term direct impacts on local air quality during the construction phases of this project. resulting from dust and emissions from construction equipment. Appropriate control measures will be taken to minimize dust on the site during construction.

6.2.4 Natural Setting and Sensitive Ecosystems

The project will not have a direct impact on wetlands, prime farmland, wild or scenic rivers, or endangered species. Minimal ground disturbance will occur for the LTP modifications but will not require tree trimming, tree removal or other major disturbances. A USFW Service Section 7 online review was performed. The project area is within existing maintained landscape areas, which returned an evaluation result of the "No Effect". The USFW results are included in Appendix C.

6.2.5 Consumption of Materials

The project will use building construction materials, mechanical and process equipment, and pipe. Impacts will be mitigated through specifications requiring the contractor to reduce, re-use, and recycle as much as feasible. The project itself is predicated on using the existing LPT building and equipment, and repurposing existing tanks to eliminate new installations.

6.2.6 Human, Social and Economic Impacts

There are no direct human impacts such as dislocation or employment from the proposed project, other than the benefit of temporary construction jobs that may be created or extended during project construction. The economic benefit of the project will result in long-term lower costs for the City of Riverview, which benefits the residents through lower tax assessment.

6.2.7 Operational Impacts

The construction area is isolated, and the disruption from construction will be minimal. Chemical storage, treatment skids, and EQ tanks will be dual-contained to prevent contamination of soil, surface water, and storm water. Spills will be handled in accordance with the SWPP and SPCC Plans for the site.

Efforts will be taken to minimize the impact on treatment operations during construction and maintain disposal and treatment of leachate and condensate in accordance with permit requirements.

6.2.8 Other Impacts

No other foreseeable direct impacts were identified as a result of this project.

6.3 INDIRECT IMPACTS

6.3.1 Changes in Land Use

There are no planned infrastructure improvements that would result in a cumulative negative impact from the proposed project. The proposed project will take place entirely on the RLP property. No zoning changes will be required, as the site is already owned by the RLP and has been permitted for solid waste management and associated activities.

6.3.2 Changes in Air or Water Quality

The proposed project will not adversely impact the long-term air or water quality in the area over time. There will be emissions during construction from construction equipment. Engineered soil erosion and sediment control measures will be implemented to mitigate potential storm water quality.

The overall beneficial use of the two (2) LTP sites will be an improvement in industrial wastewater quality and volume; whether the permeate is discharged to the sewer or is permitted to direct discharge, the volume of reject will be reduced from the leachate generated. Over time, the net positive impact will benefit the users of the DUWA system and will protect the immediate environment of the RLP.

6.3.3 Changes in the Natural Setting, Cultural, Human, Social and Economic Resources

There are no anticipated long-term changes in the natural setting, cultural, human, social, or economic resources as part of the proposed project.

6.3.4 Resource Consumption and Waste Generation

The proposed project will significantly reduce the hauling as a result of the upgrades to the leachate treatment system. This will reduce truck air emissions, traffic congestion, and risk of spills, reducing the carbon footprint of the process.

Effluent discharge into the DUWA sanitary system will be stripped of contaminants, reducing the burden of treatment at the WWTP. If effluent is permitted to discharge directly into surface water body (NPDES Permit required) the connection to the DUWA sanitary sewer system may be eliminated, freeing capacity for the WWTP to treat other waste waters.

6.3.5 Other Impacts

No other foreseeable indirect long-term impacts were identified for this project.

6.3.6 Cumulative Impacts

There are no other planned infrastructure improvements that would result in a cumulative long-term impact from the proposed project.

7.0 MITIGATION

Where impacts cannot be avoided, mitigation of adverse impacts must be provided. Various impacts identified above will be analyzed and mitigative measures addressed in the following sections.

7.1 MITIGATION OF SHORT-TERM IMPACTS

The project will be constructed using methods designed to minimize construction-related short-term impacts. These are briefly outlined below.

7.1.1 Dust Control

The bidding/contract documents will require that the contractor employ dust control measures as needed and determined by the onsite inspector. Dust control measures include the use of approved dust control chemicals, the use of water, and cleanup to minimize dust generation.

7.1.2 Soil and Sediment Control

The bidding/contract documents will require that the contractor will follow approved BMP for soil and sedimentation control (SESC) measures during construction, including structural and non-structural controls. Soil erosion will be minimized though the enforcement of the SESC plan. Excess soils from construction will be disposed in the landfill or used elsewhere on-site.

7.1.3 Noise Control

The construction times will be limited to normal landfill operating hours or as approved by the City. Construction on Sundays will be prohibited in the contract documents. Noise on the construction sites will be generated by motorized vehicles, equipment, and power tools as would be typical at a construction site. The noise from construction will not be excessive compared to normal building construction projects where residences are nearby, .

7.2 MITIGATION OF LONG-TERM IMPACTS

Efforts will be made during the planning and construction of the LTP improvements to avoid long-term or irreversible adverse impacts.

7.2.1 General Construction

Construction operations will be controlled by the contract documents to preclude long term or irreversible impacts. The contract documents will prohibit spoils disposal in adjacent sensitive areas such as wetlands and floodplains. As work will be entirely within the footprint of the Landfill, no environmental impact is expected. Proper SESC measures will remain in effect throughout the operation of the LTPs.

7.2.2 Siting Decisions

The proposed improvements will occur at the existing LTP and at the former BioCNG Fueling Station. The Landfill itself is not located within a Zone AE floodplain (see Figure 4) or sensitive environmental features. No existing trees will be removed, and no significant earthwork or modifications are needed for the project.

7.2.3 Operational Impacts

The proposed project is intended to improve long-term operations at the RLP. None of the proposed upgrades will generate excessive noise due to operations. The operation of equipment involves pumps, valves, and computers, so the potential for accidents due to operations is minimal.

7.3 MITIGATION OF INDIRECT IMPACTS

The project will result in minimal direct impacts regarding land use and will result in net positive impacts for transportation changes, and water quality. Air quality, natural setting, and social resources for the service area are not expected to see any impact from the proposed project. The proposed improvements to the leachate treatment system will not have a negative impact on the Landfill or the surrounding area.

7.3.1 Master Plan and Zoning

The work of the project will be performed on and within the landfill property boundaries. Cultural and historical features, neighborhoods, prime or unique agricultural lands, and nearby sensitive features will not be affected.

7.3.2 Ordinances

The project does not require development of new ordinances or modification of existing ordinances.

7.3.3 Staging of Construction

Construction for the proposed project will be staged on site to mitigate traffic impacts.

We recommend the proposed project to be constructed in a single construction phase, at both locations. This provides the most cost-effective solution for construction (single mobilization of equipment) and installation of equipment (economy of repetition). The capacity and location of the LTPs should minimize the need for additional improvements or changes over the next 20 years.

8.0 PUBLIC PARTICIPATION

8.1 PUBLIC MEETING

A legal notice of the public meeting was posted on the City's website and social media. A public meeting is to be held on April 25, 2024. A copy of legal notice can be found in Appendix D.

8.2 FORMAL PUBLIC HEARING ON SELECTED ALTERNATIVE

A public hearing on the Draft Project Plan is to be held on April 25, 2024. The public hearing will include a discussion of the wastewater system needs, alternatives evaluated, projected impacts of the alternatives on the environment, the opinion of probable project costs, and monthly user costs for a typical residential customer. All Public Participation documentation can be found in Appendix D.

8.2.1 Public Hearing Advertisement

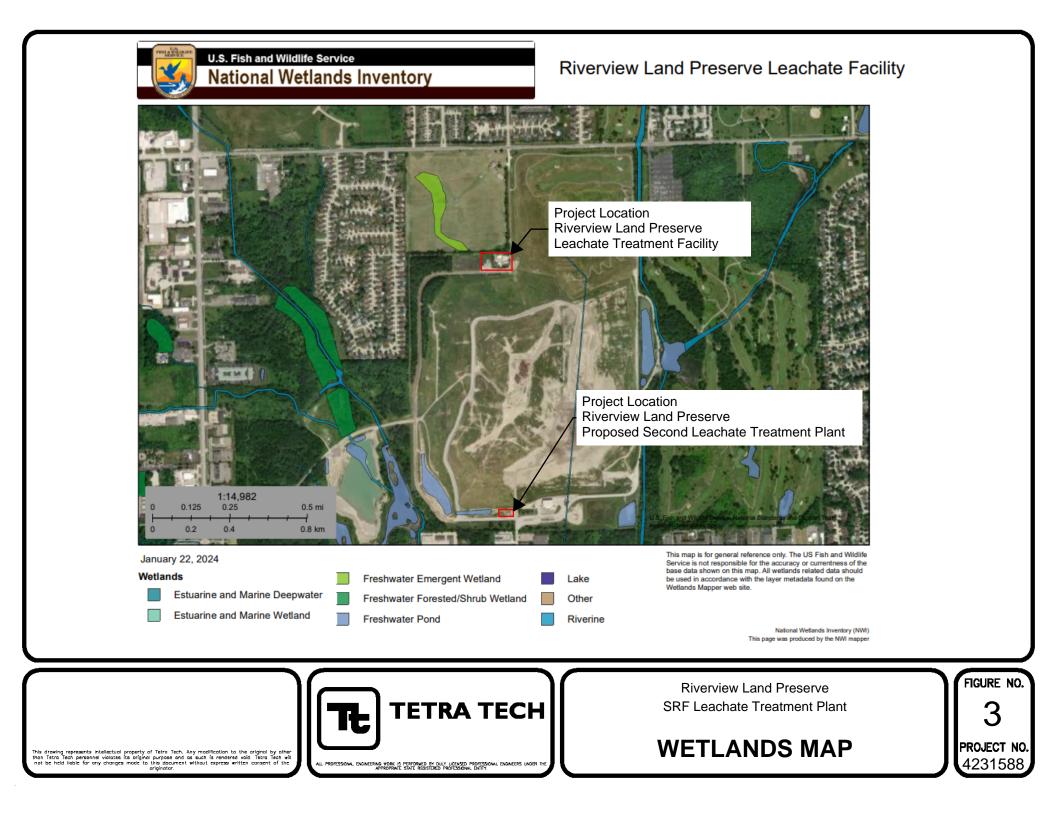
A notice of the public hearing was posted on the City's website and social media on April 1, 2024. The public hearing included a discussion of the LTP system needs, alternatives evaluated, projected impacts of the alternatives on the environment, the opinion of probable project costs, and costs. All Public Participation documentation will be included in Appendix D.

8.2.2 Public Display

The Draft Project Plan was made available for public review on April 9, 2024, which was 16 days prior to the April 25, 2024, public hearing on the City's website along with hard copies at Riverview City Hall and Riverview Veterans Memorial Library.

8.2.3 Public Hearing Transcript

A transcript of the public hearing will be included in Appendix D of this document. A copy of the public hearing attendance list will also be found (sign-in sheet) in Appendix D.


8.2.4 Public Hearing Comments Received and Answered

The typed attendance list from the public hearing will be included in Appendix D after the meeting. The public comments to be recorded as part of the Public Hearing transcript will be located in Appendix D. Additional written comments received are also included in Appendix D, along with a written response to these comments, if any are received.

FIGURES 3-14

NOTES TO USERS

his map is for use in administering the National Flood Insurance Progra does not necessarily identify all areas subject to flooding, particularly fi coal drainage sources of small size. The community map repositiony sho

To obtain more statistic information in areas share Bate Rod Elbuddoor (EFE) indicid foreign hans then obtained uncer searcharged to consult he Rood Parties and Floodwy, Data ander Summary of Silaware Revaridos tables continued with the Rood Insurance Statistic (FB) report to FINI represent rounder which for the statistic searcharged to the FINI represent rounder which for the statistic searcharged to the statistic searcharged to the statistic searcharged to the used as the sele scores of flood elevations information. Accounting, flood elevation FINI for purpose of conversion and of the cologian management.

Coastal Base Flood Elevations shown on this map apply only involved of Q to North Amarcan Versial Jakaw of 1988 (NAVO 88). Users of this FIRM should be aware that coastal food elevations are also provided in the Summary of Stilwater Elevations take in the Flood Inexanae Status years for the is prindicion. Elevations shown in the Summary of Stilwater Elevations table should be used for the deviation Schwater in the Summary of Stilwater Elevations table should be used for the deviations between on this FIRM.

Boundaries of the floodways were computed at cross sections and interpoled between cross sections. The floodways were based on interpole the section of the section floodway data are provided in the Flood insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by floor control structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for Information on flood control structures for this introdiction.

The projection used in the preparation of this map was Michigan State Plans South zone 840 (FPE32CM 2113). The horizontal datum was NADB3. Differences in datum, spheroid, projection or state plane zones used in the production of FIRMs for adjuscent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of the IRM.

Flood elevations on this map are referenced to the North American Vertica Datum of 1988. These flood elevations must be compared to structure an ground elevations referenced to the same vertifical defaults. For information regarding conversion between the National Geodetic Vertical Datum of 1928 start by Roth American Vertical Datum of 1988, visit the National Geodetis Survey webble at http://www.ngs.noaa.gov/ or contact the National Geodetis Survey webble at http://www.ngs.noaa.gov/

NGS Information Services NDAA, NNNGS12 National Geodetic Survey SSMC-3, 99202 1316 East-West Highway Silver Spring, Maryland 20910 - 3282 (301) 713-2442

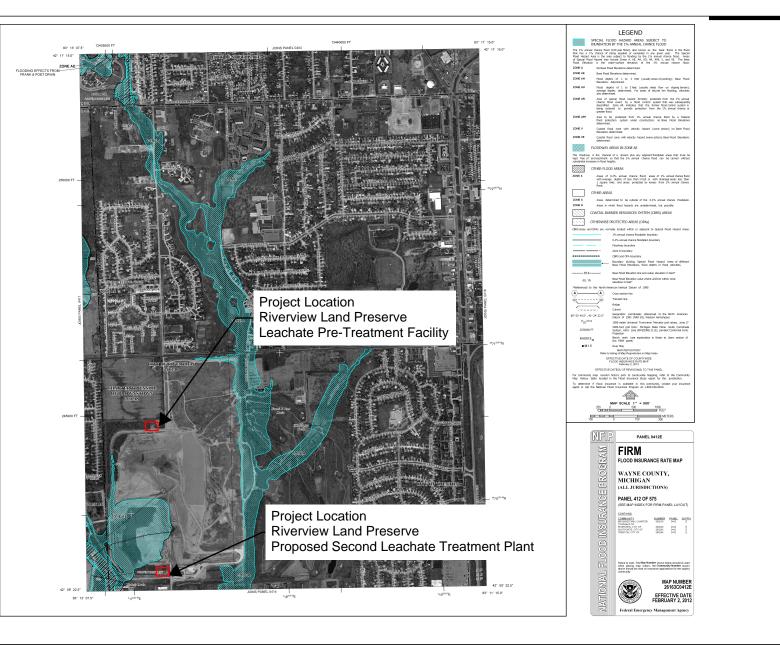
301)713-3242 Fo obtain current elevation, description, and/or locatic gen<u>ch marks</u> shown on this map, please contact

bench marks allown on this map, please contract the information Services Branch of the National Geodetic Survey at (301) 713-3242, or visit its website at http://www.ngs.roas.gov/.

 Base Map information shown on this FIRM was derived from the Wayne

County Geographic Management Unit at a scale of 1.7820 from aerial photography dated April 2001. This map reflects more detailed and up-to-date stream channel configurations.

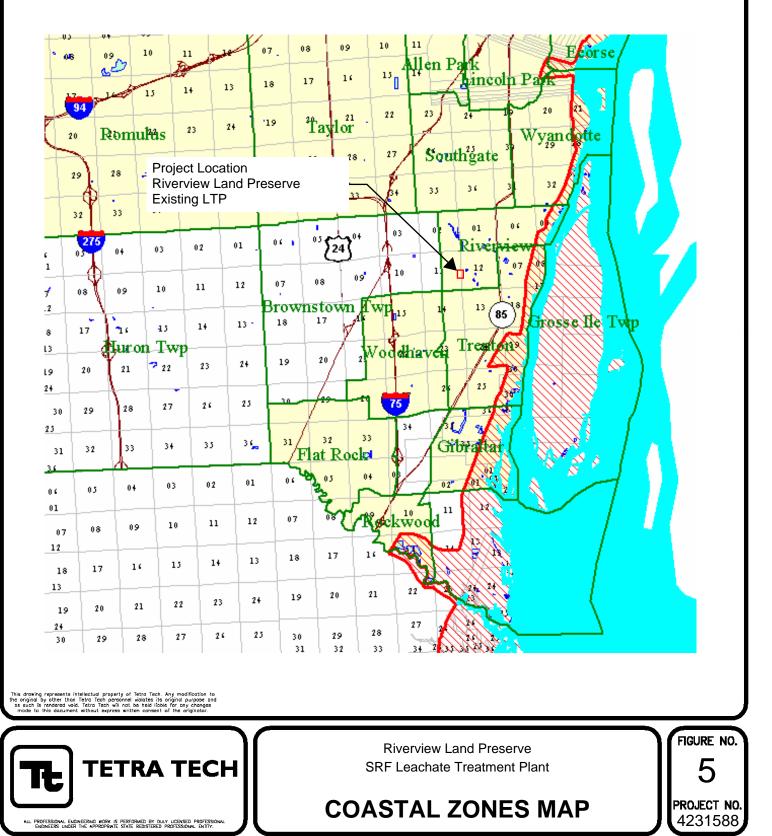
than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Dota tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances and the stream of the stream of the stream of the stream channel distances and the stream of the stream of the stream of the stream channel distances and the stream of the stream

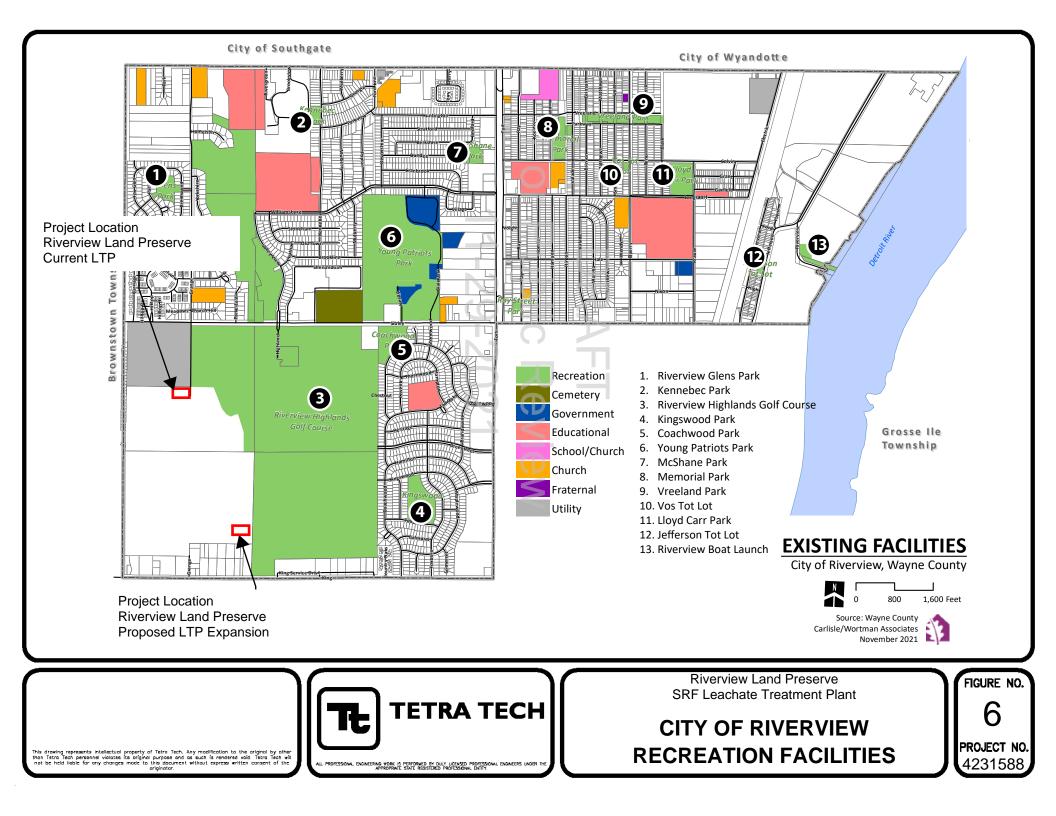

Corporate limits shown on this map are based on the best data available at the fine of publication. Because changes due to annexations or de-annexations may have occurred attent this map was published, map users should contact mercentable concentuals officially the under avaenate neoreastic location.

Please refer to the separately printed Map index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

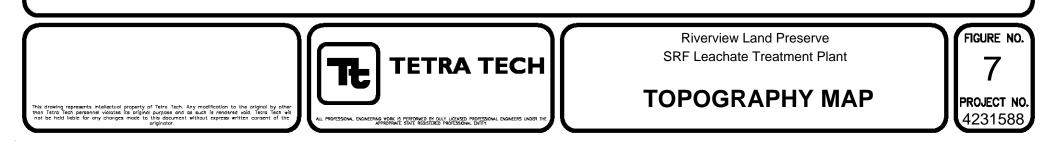
For information on available products associated with this FIRM visit the Map Service Center (MSC) website at <u>http://msc.tem.gov/</u>, Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or rightal versions of this map. Many of these products can be ordered or obtained directly from the MSC website.

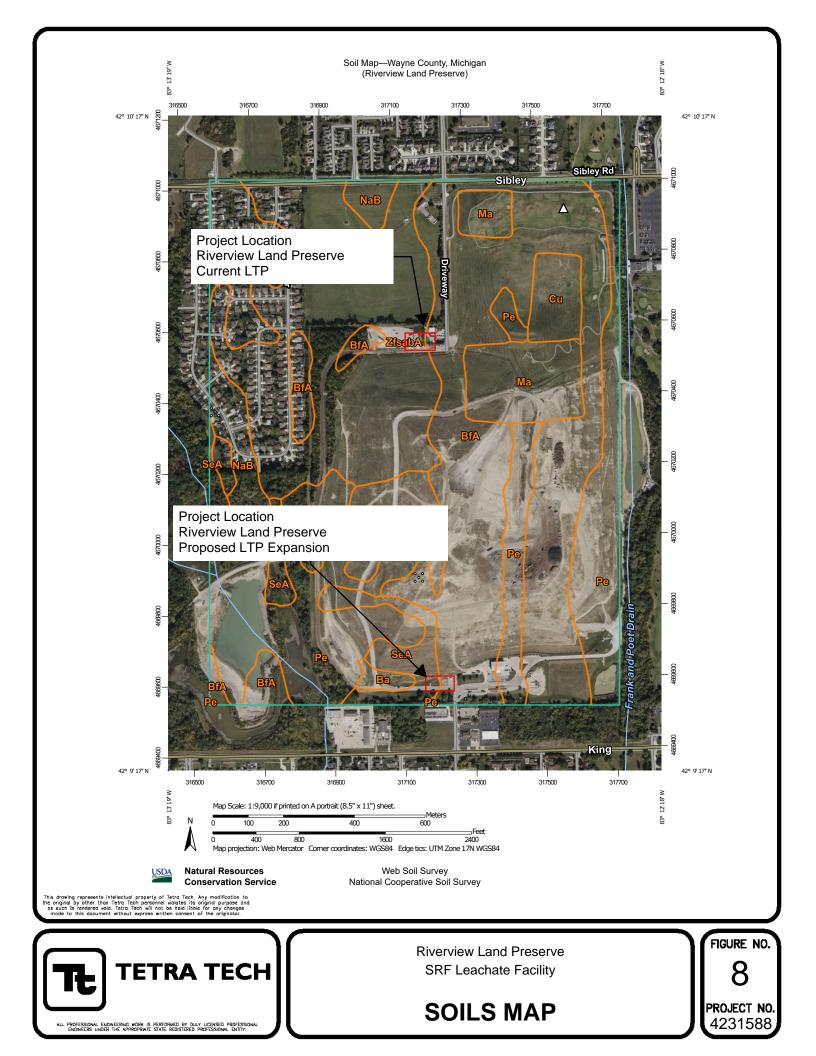
If you have questions about this map, how to order products, or the National Rood insurance Program in general, please call the FEMA Map laformation &Change (FMUX) at 13/7-FEMA-MAP or visit the FEMA website at TheOrement from accountershifts

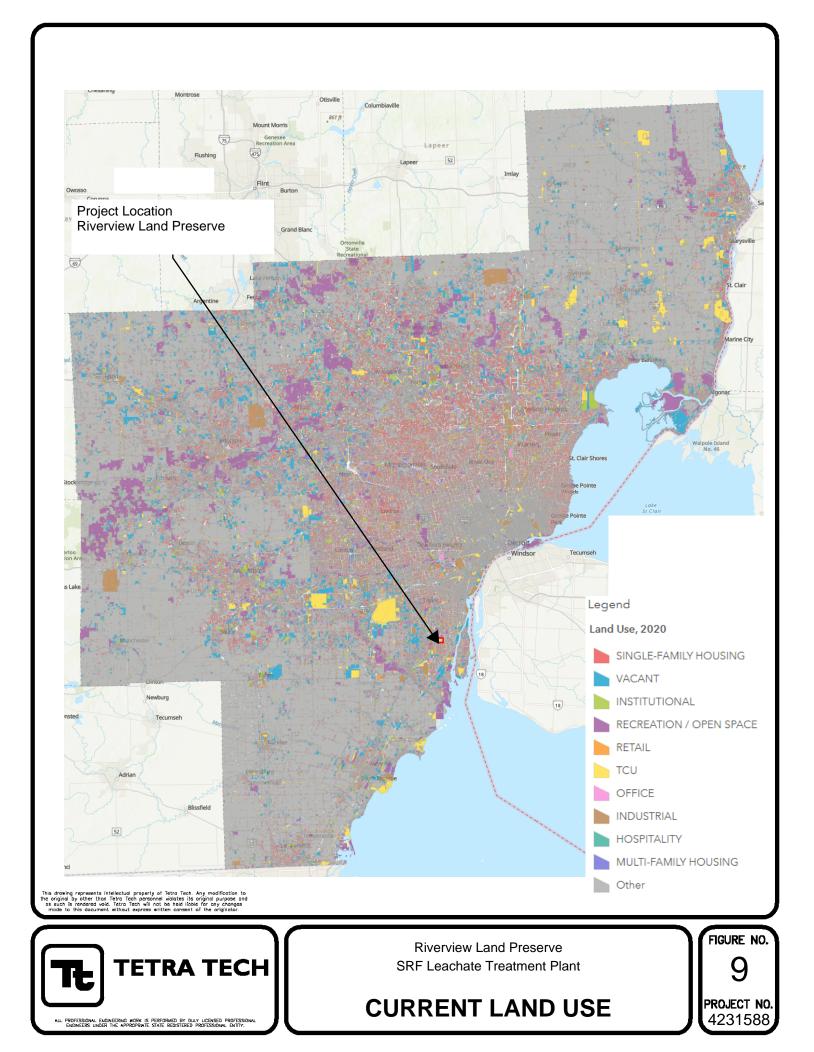

The profile base lines depicted on this map represent the hydraulic modeling baselines that match the flood profiles in the FIS report. As a result of improved lopographic data, the profile base line, in some cases, may deviate significantly from the channel centerline or appear outside the SFHA.

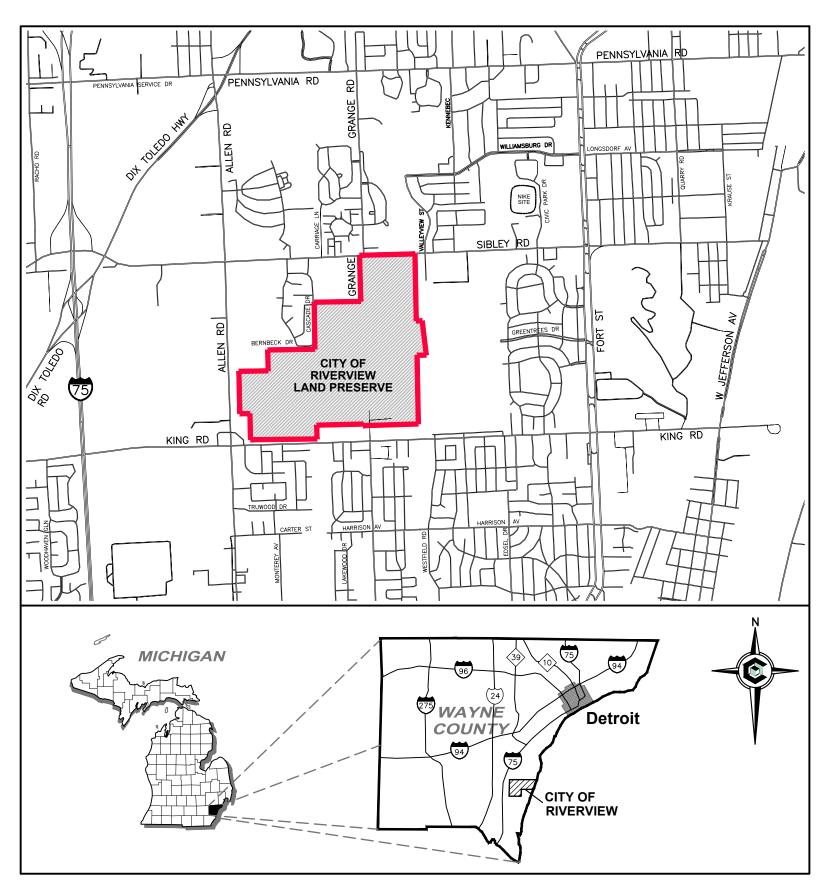


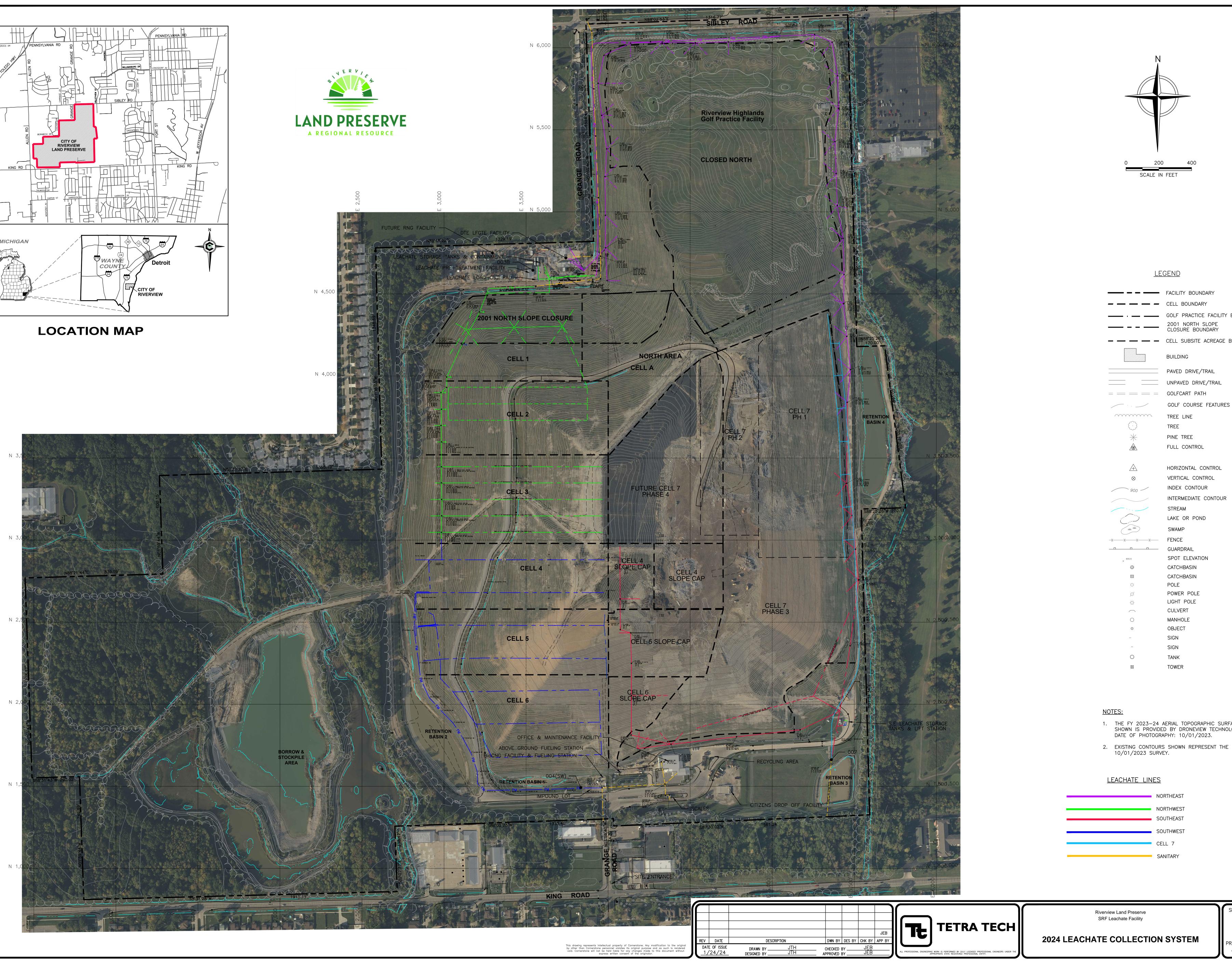

Riverview Land Preserve SRF Leachate Treatment Plant FLOODDPLAIN MAP


Wayne County Ecorse, Lincoln Park, Wyandotte and Riverview, T3S R11E Trenton, T4S R11E Rockwood, Gibraltar and Brownstown Township T5S R10E


The heavy red line is the **Coastal Zone Management Boundary** The red hatched area is the **Coastal Zone Management Area**.

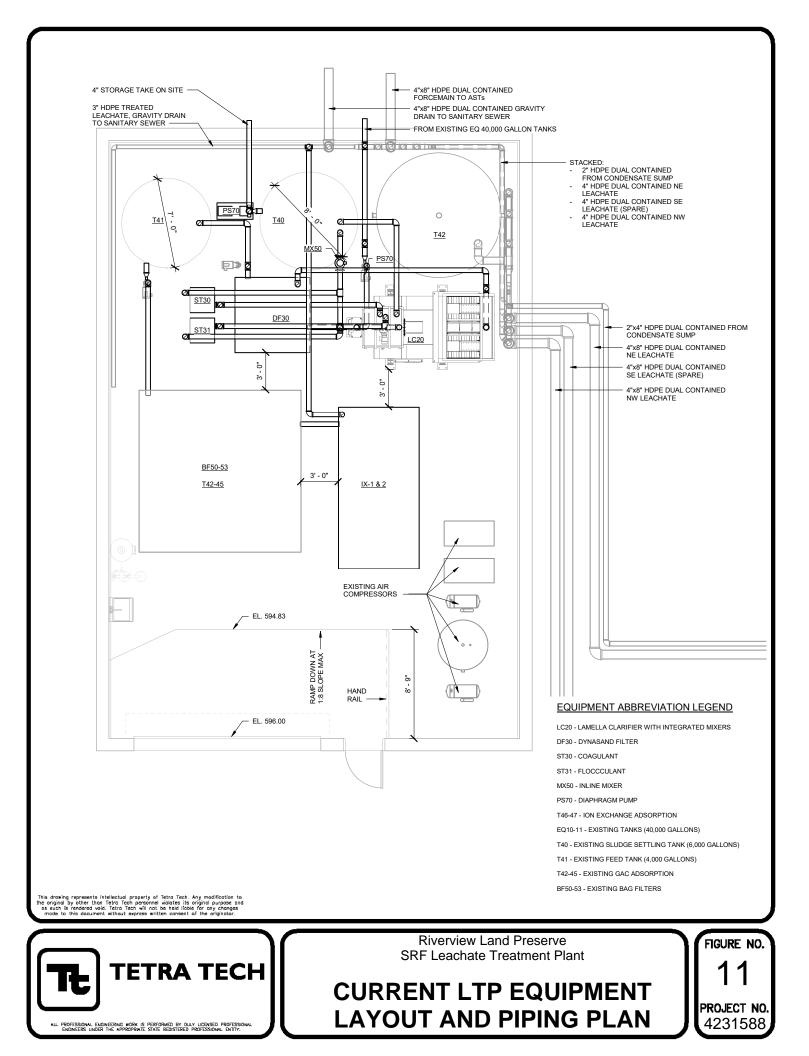


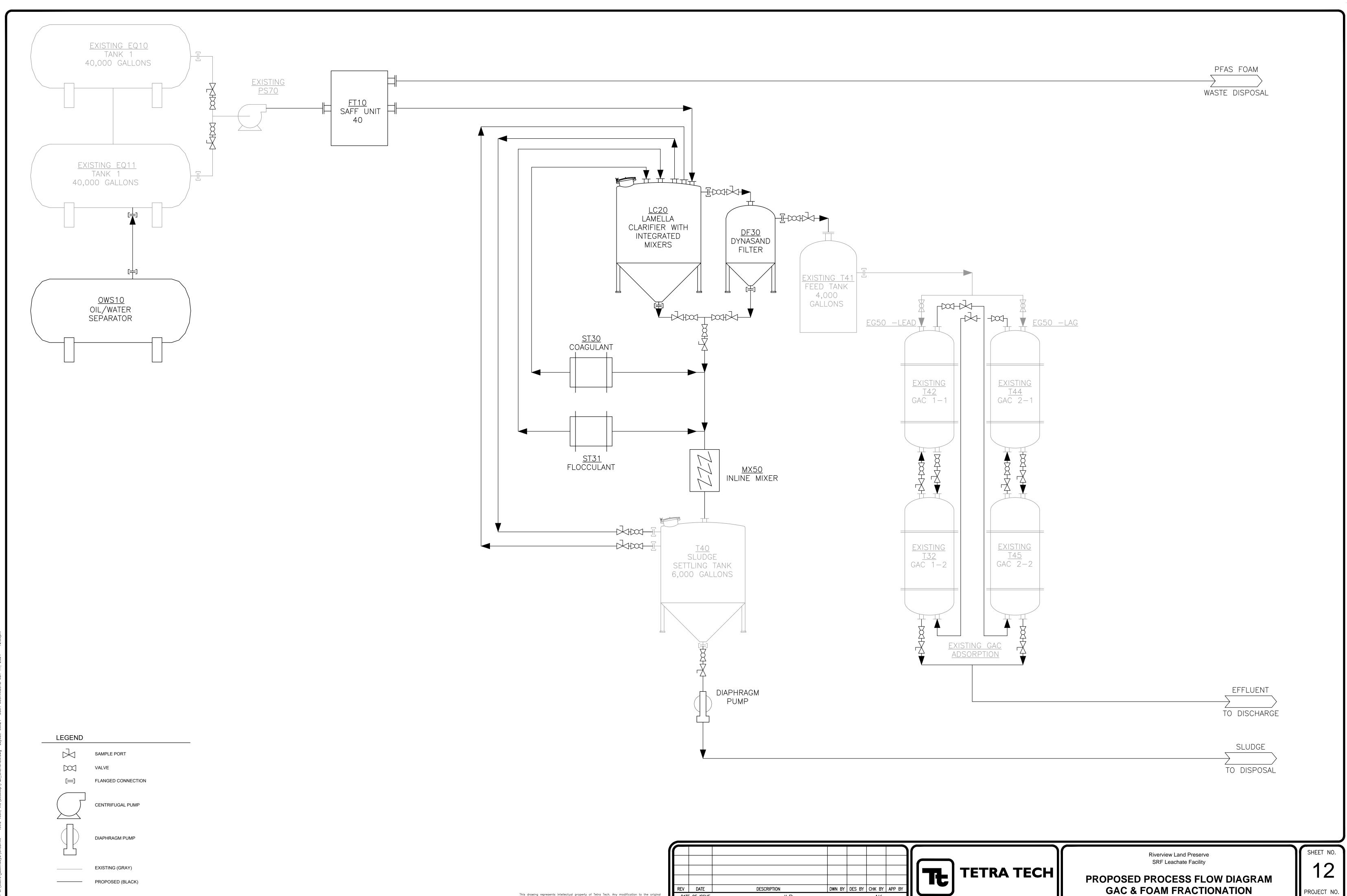




~ _ _ ` 1/2" 1/2"

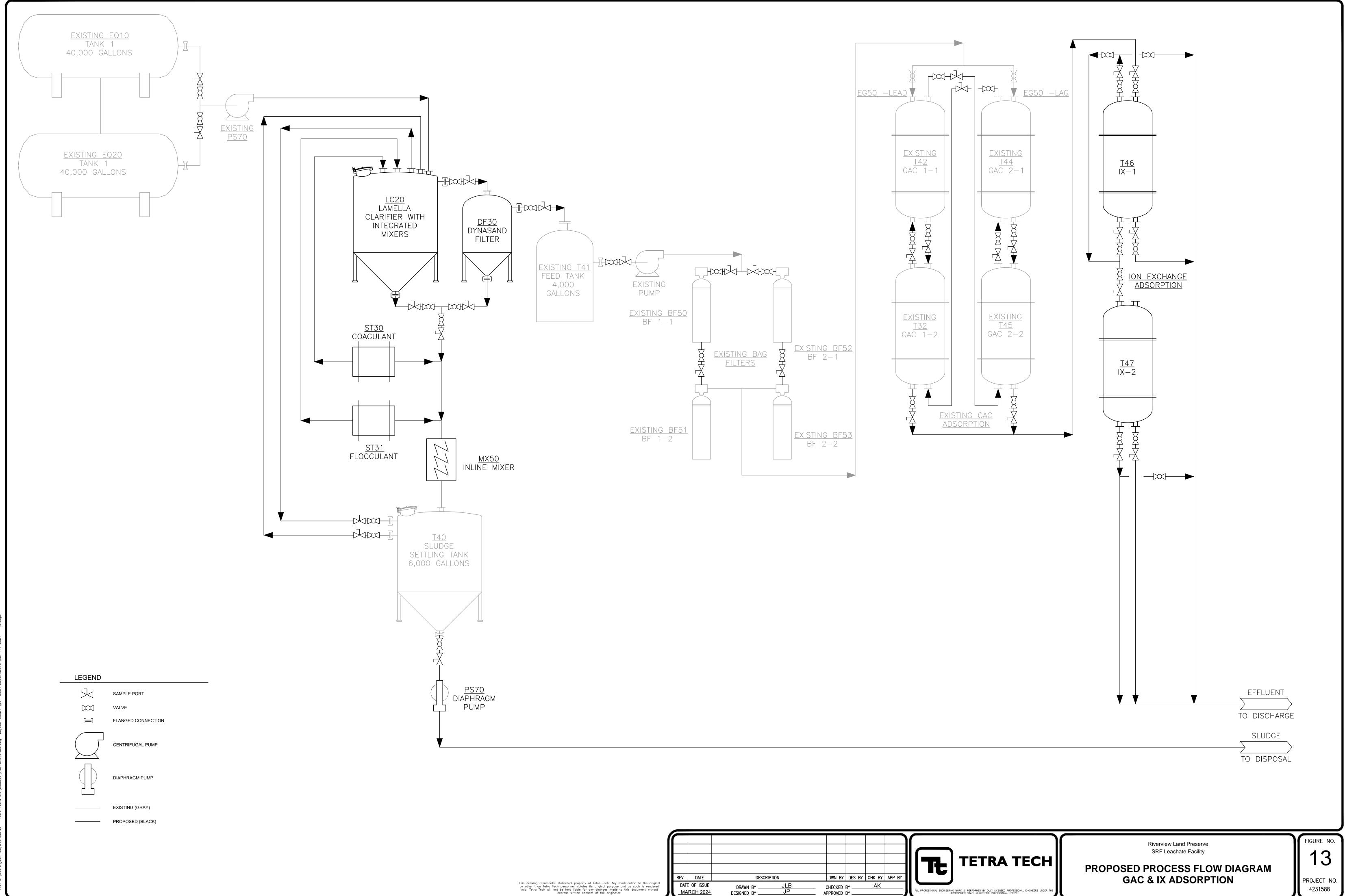
FACILITY BOUNDARY - - CELL BOUNDARY GOLF PRACTICE FACILITY BOUNDARY 2001 NORTH SLOPE CLOSURE BOUNDARY - --- --- CELL SUBSITE ACREAGE BOUNDARY PAVED DRIVE/TRAIL UNPAVED DRIVE/TRAIL GOLF COURSE FEATURES FULL CONTROL HORIZONTAL CONTROL VERTICAL CONTROL INDEX CONTOUR INTERMEDIATE CONTOUR LAKE OR POND SPOT ELEVATION CATCHBASIN CATCHBASIN POWER POLE LIGHT POLE


THE FY 2023-24 AERIAL TOPOGRAPHIC SURFACE SHOWN IS PROVIDED BY DRONEVIEW TECHNOLOGIES. DATE OF PHOTOGRAPHY: 10/01/2023.


NORTHEAST
NORTHWES
SOUTHWES
CELL 7
 SANITARY

PROJECT NO.

4221588

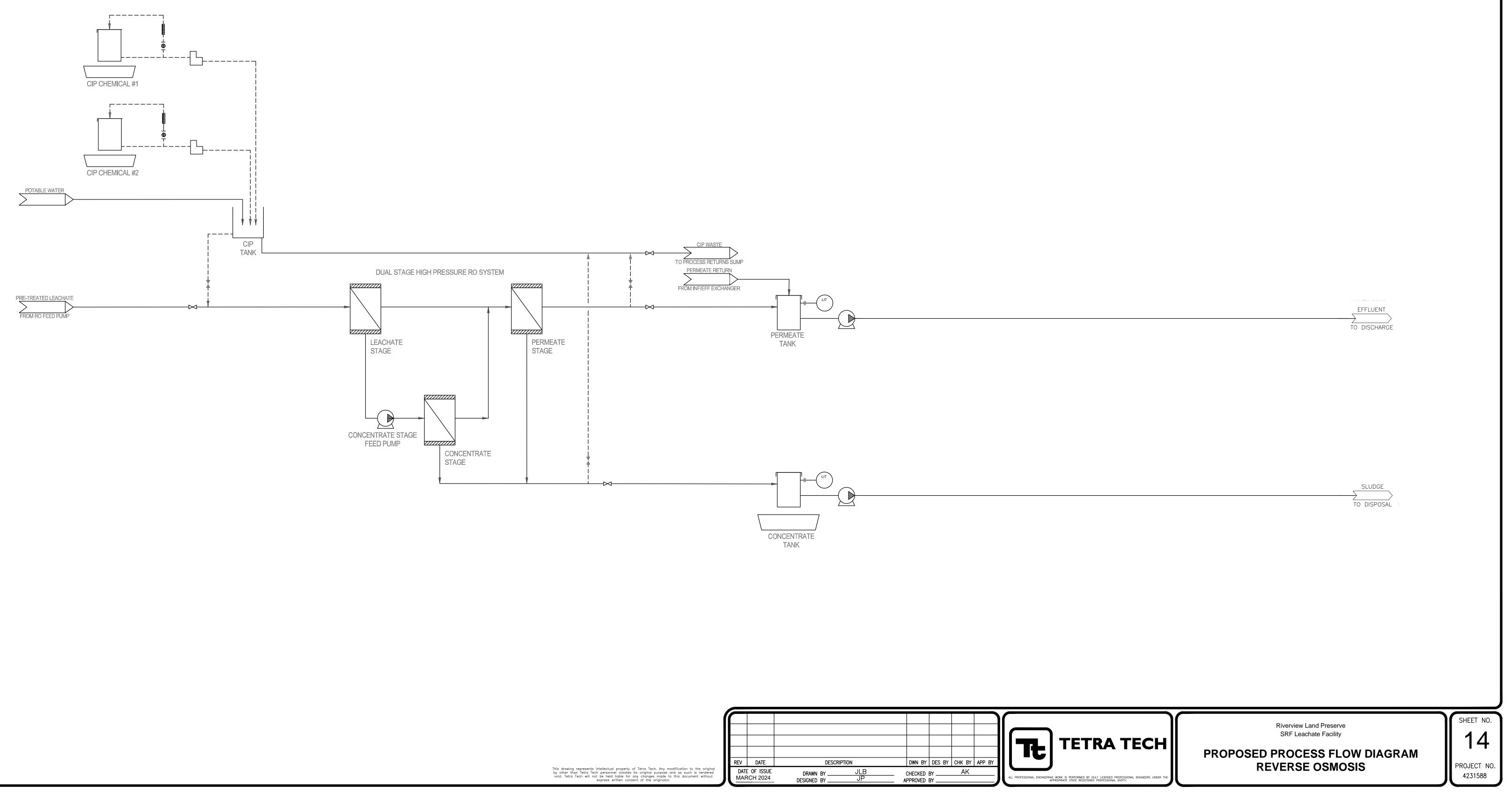

etra

ю — 1/2"

	REV	DATE	DESCRIPTION	DWN BY D	ES BY	СНК ВҮ	APP BY		TETRA TECH
ginal ered out		te of Issue Arch 2024	drawn byJLB designed byJP	CHECKED BY APPROVED BY		AK		Щ	ALL PROFESSIONAL ENGINEERING WORK IS PERFORMED BY DULY LICENSED PROFESSIONAL ENGINEERS UNDER TH APPROPRIATE STATE REGISTERED PROFESSIONAL ENTITY.

4231588

This drawing represents intellectual property of Tetra Tech. Any modification to the origina by other than Tetra Tech personnel violates its original purpose and as such is rendered void. Tetra Tech will not be held liable for any changes made to this document without express written consent of the originator.



etra _____

° — 1/2"

									-
									ΎΓ
REV	DATE	DESCR	RIPTION	D	WN BY	DES BY	СНК ВҮ	APP BY	
	e of Issue . <u>RCH 2024</u>	DRAWN BY DESIGNED BY	JLB JP		ECKED ROVED		AK		ALL

	REV	DATE	DESCRIPTION	DWN BY	DES BY	CHK BY	APP BY	
the original rendered ht without		E OF ISSUE		CHECKED		AK		ALL PROFESSIONA

APPENDIX A: DUWA IPP PERMIT, RLP OPERATING LICENSE, DUWA VIOLATIONS

Allen Park Belleville Brownstown Twp. Dearborn Heights Ecorse Lincoln Park

Downriver Utility Wastewater Authority

River Rouge Riverview Romulus Southgate Taylor Van Buren Twp. Wyandotte

797 Central Ave. Wyandotte, MI 48193 734-285-5500 Industrial Pretreatment Program Class D Wastewater Discharge Permit

Permit No.: D-10804 Expiration Date: 1/19/2025 Effective Date: 01/20/2020 Revision #1: 5/13/2020 Revision #2: 10/23/2020 Revision #3: 11/04/2020 Revision #4: 1/15/2021 Revision #5: 09/17/2021

In accordance with the provisions of Article IV, Section 4.02 of the Downriver Utility Wastewater Authority Sewer Use Ordinance (DUWA SUO), and pursuant to the requirements of the Industrial Pretreatment Program as specified in 40 Code of Federal Regulations (CFR) 403.8 (f)

Name and Address - Mailing	Contact Person(s):	Phone No.:
Riverview Land Preserve (RLP)	Jeffrey Dobek	734.281.4263
14100 Civic Park Dr.		Fax: 734.479.5960
Riverview, MI 48193	Kevin Sisk	734.281.4263
Facility Address:		
Riverview Land Preserve	Douglas W. Drysdale	
20863 Grange Rd.		
Riverview, MI 48193		

is hereby authorized to discharge landfill leachates and maintenance facility process waters from the above identified facility and through the outfalls identified herein into the sanitary sewer system tributary to the DUWA, Downriver Sewage Disposal System in accordance with the conditions set forth in this permit. Compliance with this permit does not relieve the permittee of its obligation to comply with any or all applicable pretreatment regulations, standards, or requirements under local, state, and federal laws, including any such regulations, standards, requirements, or laws that may become effective during the term of the permit.

Non-compliance with any term or condition of this permit shall constitute a violation of DUWA SUO. If the permittee wishes to continue to discharge after the expiration date of this permit, permittee shall apply for permit re-issuance a minimum of (90) day prior to the expiration of their existing permit, in accordance with Article IV, Section 4.03 of the DUWA SUO.

Authorization of Permit: Downriver Utility Wastewater Authority

Signature of Official

K Joychan Kurian Joychan

Kurian Joychan Industrial Pretreatment Program Manager

Title: Date:

09/17/2021

A. Discharge Limitations

- 1. Authorized Waste streams
 - a. Permittee is authorized to discharge landfill leachate and wastewater into the sanitary Sewer system from the following areas of the landfill:

Southwest Area (SW), leachates from Cells 4, 5 and 6 is connected to treatment system. Sample point 004 is removed from permit on 4/13/2020. Sample 004 will retain the physical connection to the sewer but will be deactivated. The discharge location will be reserved for Emergency use only, subject to approval from DUWA, after submitting lab results for all parameters from sample point 004 before requesting discharge. These parameters are same as in the permit for sample point 003B. Riverview Land Preserve shall get written authorization from Control Authority prior to discharge.

Northwest Area (NW), Leachates – Cells 1, 2, 3 & A North, Northeast and Southeast Area (NE& SE) Leachates,

Sample Point 003B inside Treatment Bldg. north wall, discharge from carbon beds.

Southeast area Cell 7 Sample Pt. 007, discharge from valve pit to sanitary sewer at MH # 11.

Also Equipment washing station wastewater pretreated in an oil/water separator located in the maintenance building.

- i. Northeast area 86 acres. Wastewater consists of leachates from a perimeter Collection system and gas plant condensate. Discharges to sample point 003B Pretreatment Building, carbon bed discharge.
- ii. Southeast area 68 acres. Wastewater consists of leachates from a perimeter Collection system tributary to NE pump station through a gravity line on the east side of the landfill. Discharges to sample pt. 003B Pretreatment Building, carbon bed discharge.
- iii. Northwest area 61 acres. Wastewater consists of leachates from Cells I, II, III And Cell A North. Leachate flows thru lateral piping for collection. Piping is Perforated. Flows to outfall 003 or underground storage tank in NE corner of NW area, sample point 003B. Treatment Bldg. carbon bed discharge
- iv. Southwest area 50 acres, wastewater consists of leachate from Cells 4, 5 and 6. Leachate flows thru lateral piping (perforated), by gravity, to a sump at low point of cell. A submersible pump, in the sump, pumps leachate in a "side slope riser" (SSR) and into a double contained force main. Leachate is then pumped to the Treatment Building and discharged through sample point 003B.

- c. Permittee shall continue to adhere to all applicable provisions of the O & M Manual. These include maintenance of daily log sheets for all totalizing flow meters, And implementation of the final O & M manual for the Leachate Management System.
- d. In the event analytical results of sampling and analyses, performed at any of the sampling points specified in this permit, reveal the presence of PCBs, permittee shall cease discharge immediately. Resumption of discharge shall be according to A.4. Special Conditions.
- 2. Sampling Locations Sampling Points Descriptions
 - 003B NW Cells I, II, III, A North Sample port in NW Treatment Bldg. Including Northeast and Southeast area leachates. SW - Cell IV, V, VI leachate is pumped to treatment building and Carbon Treatment system and discharged through sample point 003B

007 Cell VII - Sample port on discharge line in valve pit

004 SW, Cell IV, V, VI. Sampling port in vault, approximately 500feet west of RLP office building and 33 feet North of new Grange Road and 52 feet east of transformer. When the flow is discharged through 003B, this sample point is not used for monitoring.

- 3. Summary Table
 - a. Local limits per DUWA SUO:

The pollutants listed under "Local Limitations per DUWA SUO" are reasonably expected to be present in the facility discharge at levels of concern. Therefore, the user is required to implement a self-monitoring program, as described in the summary table, to ensure compliance.

Discharge Lim	Discharge Limitations			irements
Effluent Characteristic	Average Daily	Measurement	Sample	Sample Point
	Concentration mg/l	Frequency	Туре	
Phenolics (T)	1.0	Quarterly	Grab	003B, 007, 004
PCB's (T)	<0.0002	Monthly	Grab	003B, 007, 004
Total Suspended Solids	2,600	Quarterly	Grab	003B, 007, 004
Total Phosphorus	53.4	Quarterly	Grab	003B, 007, 004
Biochemical Oxygen demand CBOD ₅	2,200	Quarterly	Grab	003B, 007, 004
Mercury (T)	<0.0002	Quarterly	Grab	003B, 007, 004
Volatile organics Method 624	monitor only	Semi-Annual	Grab	003B, 007, 004
		January – June &		

		July - December		
PFAS Constituents using	Report	Monthly	Grab	007, 003B, 004
modified 537 methodology				
Detection Limit 2ng/l				
Semi-volatiles Method 625	monitor only	Semi-Annual	Grab	003B, 007, 004
		January – June &		
		July - December		

Monitor Inlet and Outlet of the Granular Activated Carbon bed Quarterly and submit lab data along with the Periodic Compliance Report for PCB and PFAS.

Telephone at 734-285-5500, of by Fax 734-285-5248, within 24 hours of becoming aware of a violation of the permit.

All regulations regarding wastewater discharges to the DUWA Downriver Sewage Disposal Systems, set forth in Article IV and Appendix A, of the DUWA SUO, shall be conditions of this permit.

Submit PFAS Reduction Report updates with all the lab data on March 20th of each year for the period of January through March, June 20th of each year for the period of April through June and September 20th of each year for the period of July through September and December 20th of each year for the period of October through December.

4. Special Conditions (for resumption of discharge)

- a. Following special conditions shall apply for resumption of discharge from an area in which analytical results of sampling and analyses revealed presence of PCBs. The extra monitoring requirements are intended to ensure that, RLP demonstrates its ability to consistently comply with the PCBs limit and other permit limitations.
- b. Resumption of discharge shall be allowed on <u>a batch basis</u> in accordance with the following procedure:
 - i. Leachate shall be collected and stored in a Leachate Collection Tank.
 - ii. When the above tank is full, a representative cross sectional (core) sample shall be collected and analyzed for total PCBs. Analytical results shall be submitted to DUWA IPP, in writing, with a request for authorization to discharge said batch.
 - iii. If the total PCBs concentration of the sample is non-detectable (N.D.) based on a detection limit (D.L.) of 0.0002 mg/l, authorization to discharge of the batch under consideration shall be granted.
 - iv. This procedure of batch discharge after verifying the absence of PCBs and obtaining appropriate authorization shall continue until RLP demonstrates its ability to consistently comply with the PCB and other permit limitations.
- c. Permittee may request resumption of direct discharge of leachate from the landfill area which previously detected PCBs in excess of the DUWA SUO and the DUWA IPP

*

discharge permit upon determination that leachate in this area has met the limits for ten (10) consecutive batch discharges representing at least 100,000 gallons. The request must be submitted to DUWA - IPP, in writing, and include all analytical results, QA/QC data and chain of custody records.

DUWA - IPP shall promptly review the request and issue a decision in writing, within 14 business days of the receipt of said request. Resumption of direct discharge shall not commence without written authorization (FAX is acceptable) from DUWA - IPP.

- d. Permittee shall commence discharge to the sanitary sewer system in accordance with the initial sampling period below.
- e. <u>Initial Sampling Period</u> first 14 discharge days (upon commencing discharge).

Discharge	Limitations	Self-Monitoring Requirements				
Effluent Average Daily Characteristic Concentration mg/l		Measurement Sample Frequency Type		Sampling Point		
PCBs (T)	< 0.0002	see below	Composite	appropriate sampling point(s)		

See Attachment A, Appendix A for explanation of quantification levels and Matrix Interferences.

Measurement Frequency

For the first 14 discharge days (initial sampling period), discharge from each area shall be sampled and analyzed for total PCBs as follows:

For the first fourteen (14) discharge days, sampling shall be conducted each discharge day.

f. Thereafter, sampling shall be in accordance with discharge limitations listed in A3(a).

During the initial sampling period, sampling and analysis shall be conducted at the expense of RLP.

PCB sampling shall consist of a time- weighted composite sample collected during each discharge interval. Total Phenolics sampling shall consist of a grab sample collected at the beginning of each composite period.

Sampling and analyses results shall be provided within 24 hours of sampling. The contracted laboratory shall send the analytical results simultaneously to DUWA and to RLP.

B. Self-Monitoring Conditions:

- 1. Definitions
 - a. <u>Maximum Monthly Average Limit</u> The maximum allowable value for the arithmetic average of all samples collected during one (1) calendar month.

- b. <u>Daily Maximum Limit</u> the maximum allowable discharge of a pollutant during a calendar day. Where daily maximum limitations are expressed in mass units, the daily discharge is the total mass discharged during the course of a day. Where daily maximum limitations are expressed in units of concentration, the limitation is the arithmetic average value of all samples collected during the day.
- c. <u>Average Daily Concentration Limit</u> The highest allowable value expressed in concentration units. The limit is the arithmetic average of all samples collected during that day. It applies to all parameters with the exception of pH.
- d. <u>Daily Minimum Limit</u> The minimum allowable concentration of a pollutant, allowed to be discharged in a calendar day. This term usually applies to pH, where it is the lowest pH measurement determined from the analysis of number of grab samples collected, independent of the industrial flow rate and the duration of the sampling event.
- Analytical Procedures
 Analytical procedures for all analyses of pollutants to determine compliance shall be in accordance with 40 CFR Part 136, except for PFAS analysis as mentioned in Part I Section A.3.B. PFAS analysis is to be performed in accordance with State of Michigan DEQ IPP PFAS INITIATIVE recommendations, and as advised in this permit.
- 3. Representative Sampling The samples and measurements that are taken as a result of requirements in this permit must be representative of the effluent being discharged during a typical workday.
- 4. Sample Type

Grab – an individual sample collected over a period of time not to exceed 15 minutes, which reasonably reflects the characteristics of the wastestream at the time of sampling. Request for Grab sample was received on September 16, 2021 and approved by DUWA on September 16, 2021.

Composite – a sample comprised of individual grab samples collected at regular intervals, on a time proportional basis, over a specified period which provides a representative sample of the average stream during the sampling period.

- 5. Sample Point Compliance sampling shall be performed at the sampling location identified in Part 1 A.2 and Attachment C. Sample locations are not to be changed without prior written approval from the DUWA –IPP Section.
- 6. Sample Frequency The effluent must be sampled and analyzed at the frequency indicated in the summary table above. This applies for all the parameters shown in the table.
- Greater Sampling Frequency
 If the permittee or its agent, samples and monitors any pollutant using EPA approved procedures, at the sampling point(s) described in this permit, more frequently than

required, then the results of this sampling and monitoring must be included in the Periodic Compliance Report. Permittee must calculate and report average values in the Report, taking the additional sampling and monitoring into account.

8. Non-compliance Additional Sampling If a permittee is in non-compliance and subject to enforcement actions, additional selfmonitoring may be required. The additional self-monitoring may be required until such time as the permittee can demonstrate compliance.

C. Charges and Fees

1. Surcharge

Carbonaceous Biochemical oxygen demand, 5-day (CBOD5), total suspended solids (TSS), and Total phosphorus are surchargeable parameters. If the discharge contains concentrations of these compatible pollutants in excess of the allowable concentrations (BOD=275mg/l and TSS=350mg/l, and T. phosphorus=6mg/l) the permittee must pay a surcharge on the excess amount. The permittee may elect to do monthly self-monitoring of these parameters and have the results included in the determination of the surcharge and must then comply with the surcharge policy of the DUWA.

2. Industrial Surveillance Fee The permittee shall pay directly to the DUWA, an Annual Industrial Surveillance Fee calculated pursuant to formula listed in Attachment B, and billed by the DUWA on a quarterly basis

D. Reporting

1. Periodic Compliance Report (PCR)

The permittee shall report self-monitoring and flow rate data to DUWA – IPP on a quarterly basis. The PCR shall consist of a summary of data on the PCR form and copies of the analytical reports, including chain of custody forms and quality assurance/quality control (QA/QC) data. The report shall be received by the end of business day on the 15^{th} day of the month following the end of the reporting period (January 15, April 15, July 15 and October 15).

- 2. Volatile and Semi-Volatile Organics The permittee shall self-monitor for volatile organics during 2nd and 4th quarters and for semi-volatile organics during the 2nd quarter at the designated sample points. Results shall be included with the respective PCR.
- 3. Slug / Spill Control Plan

Industrial Users shall provide protection from accidental discharges of substances which may cause interference at the Downriver Sewage Disposal System pursuant to Article IV, Section 2.04 of the DUWA SUO. The 2008 Integrated Contingency Plan as amended.

The plan shall be implemented by the user to address notification, slug or spill prevention, containment, spill cleanup and employee training and submit it to the IPP Section for approval prior to construction. Approval of such plans shall not relieve the industrial user from complying with laws and regulations governing handling of hazardous substances. Any required facilities shall be provided and maintained at the user's expense. Significant Industrial Users are required to notify DUWA-IPP immediately of any changes at its facility affecting the potential for a slug discharge.

Leachate Flow Records

Permittee shall submit daily log sheets (Form # 201) showing all discharge and recirculation totalizing flow meter readings and valve directions on a quarterly basis. These records shall be submitted no later that the 15th day following the end of each quarter.

Volume Reporting

Permittee shall report the volume discharged, for billing purposes, on a monthly basis to the city of Riverview finance department, on a quarterly basis to DUWA-IPP Section.

4. Signatory Requirements for Reports The PCR's shall include the certification statement pursuant to Article IV, Section 5.04 of the DUWA SUO and shall be signed by an authorized representative of the industrial user per Article I, Section 1, Definition 5, of the DUWA SUO.

5. Total Phenolics and PCB Results

Analytical reports of self-monitoring for total Phenolics and PCB's during the initial Sampling Period (Part I.A.4.e.) shall be submitted to DUWA – IPP Section within 24 hours of sampling.

E. Enforcement Orders

This permit contains specific discharge limitations, effective dates, self-monitoring, reporting and terms and conditions for your facility.

Please note that any and all penalties, compliance schedules, compliance agreements, and/or Administrative Orders previously issued or agreed to as a result of violations by the permittee, prior to the issuance of this permit, remain in full force and effect.

Part II

A. General Terms and Conditions

1. Right of Entry

The permittee shall allow DUWA representative, upon the presentation of credentials, access at all reasonable times to all parts of the premises for the purposes of inspection, observation, sampling, examining records, copying records, conducting an investigation, or the performance of any of their duties related to the administration of this permit and/or the DUWA's Industrial Pretreatment Program (IPP). Denial of entry shall constitute a violation of the Regulation and subject the user to enforcement action.

- 2. Retention of Records
 - a. The permittee shall keep records and make available upon request of the DUWA, State of Michigan, or EPA for at least three (3) years, of the following:
 - i. All monitoring information includes all calibration and maintenance records.
 - ii. All correspondence related to monitoring, sampling and analyses related to its discharge, including Best management Practices, if applicable.
 - iii. Copies of all reports required by this permit.
 - iv. Records of all data used to complete the Industrial-Commercial Waste Questionnaire, which serves as the application for this permit.
 - b. All records that apply to matters that are the subject of special orders or any other enforcement or litigation activities brought about by DUWA shall be kept and preserved by the permittee until all enforcement activities have concluded. Also, until all periods of limitation regarding appeals have expired.
- 3. Fines and Penalties for Violations of Permit Conditions
 - a. Municipal Civil Infractions

DUWA adopted a Municipal civil Infractions Regulation to designate certain violations of the Sewer Use Regulation as municipal civil infractions rather than criminal misdemeanors. The sanction for a violation shall be civil fine in the amount provided by schedule of civil fines contained in Article IV, Section 6.10.2

 b. Criminal Penalties
 Any person who is convicted of a violation of State law or DUWA SUO, as per Article IV, Section 6.12 shall be guilty of a misdemeanor and punishable by a fine of \$500.00, per violation per day or imprisonment for up to 90 days, or both, at the discretion of the court.

If a violation is committed by a person whom acts or fails to act on behalf of a corporation or partnership, that person shall be held personally liable for fine or imprisonment of both.

4. Fee and Charges

The permittee shall pay fees and surcharges including late fees and interest, directly to the DUWA for at least the following:

- a. Annual Industrial Surveillance fees.
- b. Surcharges for compatible pollutants discharged in excessive concentrations as detailed in Article IV, Section 3.04.
- c. To recover actual additional costs it may incur in connection with inspecting and enforcement, implementation of the IPP, sampling, testing, handling and treating the wastes not covered by existing wastewater charges in addition to the Annual Industrial Surveillance fee referred to above.
- d. Cost of handling and treating wastewater into the sewer not otherwise provided.

The above charges and fees are separate from any sewage or excess sewage fees collected pursuant to Michigan Public Act 185 of 1957.

5. Additional Sewer Information

The permittee shall agree to furnish the DUWA, upon request, any additional information relating to the installation or use of the sewer.

- 6. Pretreatment Facilities
 - a. Operation: The permittee shall provide, operate and maintain any industrial wastewater pretreatment facilities, as may be required by this permit, in an efficient manner at all times, and at permittee expense.
 - b. Detailed plans and operating procedures for new pretreatment facilities must be submitted for review and approval, prior to construction. Submit plans to the DUWA, at the address on the cover sheet of this permit.
 - c. Any subsequent changes in pretreatment facilities of operating procedures must be reported to the DUWA for review and approval, prior to initiation of the changes.
- 7. Slug/Spill Control Plan

Industrial Users shall provide protection from accidental discharges of substances, which may cause interference at the Downriver Sewage Disposal System pursuant to Article IV, Section 2.04 of the DUWA SUO. Where necessary, spill prevention or slug control plans shall be developed by the user to address notification, slug or spill prevention, containment, spill cleanup and employee training and submit it to the IPP Section for approval prior to construction. Approval of such plans shall not relieve the industrial user from complying with laws and regulations governing handling of hazardous substances. Any required facilities shall be provided and maintained at the user's expense.

B. **Notification Requirements**

Emergency notification felephone numbers:						
Office	Phone	Fax				
IPP Section (M-F, 7am – 3:30pm)	734.285.5225	734.285.5248				
DSDS WWTP (M-F, 7 am – 3:30 pm)	734.285.5500	734.285.5248				
DSDS Shift Supervisor (24/7)	313.213.5107					
24-Hour Hot Line (24/7)	1.888.223.2363					

1. Self-Monitoring Violations

If the results of the permittee's self-monitoring indicates that a violation of this permit has occurred, the permittee must, in accordance with 40 CFR 403.12(g)(2):

- a. Inform the DUWA by telephone, fax, or e-mail within 24 hours, of becoming aware of the violation, and
- b. Repeat the sampling and pollutant analysis and submit, in writing, to the DUWA-IPP Section the results of this second analysis within thirty (30) days of the first violation, except if:
 - i. The DUWA representative performs sampling at facility at least once per month.
 - ii. The DUWA representative performs sampling between the time the permittee performs initial sampling and the time when permittee receives results of this sampling.
- 2. **By-Pass Notification**

By-pass of pretreatment facilities necessary to maintain compliance with all the requirements of this permit is prohibited, unless:

- By-pass was unavoidable to prevent loss of life, personal injury, or severe a. property damage.
- There were no feasible alternatives to the by-pass. b.
- c. The permittee submitted notices as required per Article IV, Section 2.05.6(b) of the Sewer Use Regulation.
- d. The DUWA representative may approve an anticipated by-pass, after considering its adverse effects, if the DUWA representative determines that it will meet the three (3) conditions listed in Article IV, Section 2.05.6(c)(1) of the Sewer Use Regulation.

3. Slug / Spill Notification

The permittee shall within one hour, of becoming aware, report any spill or slug which may cause increased pollution of normal industrial and/or sanitary waste-water. Call DUWA representative at 734-285-5500 and report the: 1) location of discharge, 2) date and time of discharge spill or slug, 3) type of waste, 4) concentration and volume of the spill or slug, and 5) describe the corrective actions taken to prevent future spill or slug discharges.

If a major spill occurs that may impact storm sewers or open waterways, call the Michigan Department of Environmental Quality (MDEQ), at 1-800-292-4706 and report the spill.

Written notification is required to the DUWA Representative within five (5) days pursuant to Article IV, Section 2.05.2(b).

A slug is defined as any discharge of a non-routine, episodic nature, including but not limited to an accidental spill or a non-customary batch discharge, which has a reasonable potential to cause Interference or Pass Through, or in any way violate the POTW's regulations, local limits or permit conditions.

- 4. Upset Non-Compliance
 - a. The permittee shall notify the DUWA by phone, within 24 hours of first becoming aware, that a process upset has occurred, which places that discharger in non-compliance with the DUWA SUO or with a condition of its Class D Wastewater Discharge Permit. "Upset" is defined as an exceptional incident in which there is unintentional and temporary non-compliance with technology based permit discharge limitations because of factors beyond the reasonable control of the Industrial User. The permittee shall submit to the DUWA a written notification within five (5) days, which specifies the following:
 - i. A description of the Upset to sanitary sewer, its cause, and impact relative to compliance status.
 - ii. The duration of non-compliance, including exact dates and times or, if not corrected, the anticipated time necessary to come back into compliance.
 - iii. Steps being taken and/or planned to reduce, eliminate and prevent recurrence of that type of Upset, or other conditions of non-compliance.
 - b. An Upset shall constitute an affirmative defense to an action brought for noncompliance with Categorical Pretreatment Standards, if the requirements of the Michigan administrative Code R 323.2303(3) are met.
 - c. In any enforcement proceedings the permittee seeking to establish the occurrence of an Upset shall have the burden of proof.
 - d. The permittee shall control production or all discharges to the extent necessary to maintain compliance with Categorical Pretreatment Standards and/or Local Limits upon reduction, loss, or failure of its treatment facility until the facility is restored or an alternative method of treatment is provided. This requirement applies in the

situation where, among other things, the primary source of power of the treatment facility is reduced, lost or fails.

5. Notification of Changed Discharge

Permittee shall promptly notify the DUWA representative in advance of any substantial change in the volume or character of pollutants in its discharge including all of the following, if applicable:

- a. Groundwaters that are purged for remedial action programs.
- b. Groundwaters containing pollutants that infiltrate into the sewers.
- c. The listed or characteristic hazardous wastes for which the User has submitted initial notification pursuant to Article IV, of the Sewer Use Regulation.

(a) Permit Items

1. Permit Re-issuance

a.

- Re-application The permittee must submit an application for permit re-issuance, in the form of a completed, updated, Industrial-Commercial Waste Questionnaire, to the DUWA no later than 90 days prior to the expiration date of the permit.
- b. Re-Issuance

Upon timely application for re-issuance of a permit in accordance with paragraph a, the expired permit shall be automatically extended until a final decision regarding the application is made by the DUWA representative.

2. Permit Modification

The DUWA representative may modify a Wastewater Discharge Permit in order to:

- a. Require compliance with national Categorical Pretreatment Standards.
- b. Assure compliance with the publicly owned treatment works (POTW) NPDES Permit.
- c. Incorporate new conditions or parameter of concern due to substantial change in the User's operations or new information concerning existing conditions.
- d. Incorporate changes in federal or state laws or changes in the DUWA's approved IPP.
- e. Change or terminate special conditions of the permit including but not limited to monitoring frequency or parameters to be monitored.
- f. Correct any omissions or typographical errors.
- g. Reflect changes in the monitoring location.
- h. To address a User's noncompliance with portions of an existing permit.
- i. For any other reason, if the DUWA representative reasonably believes the modification is necessary to ensure either that the POTW complies with its NPDES permit or that the POTW does not negatively affect the receiving

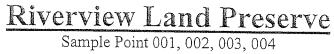
water quality standards, the national air quality standards or any other applicable permit, order, statute, regulation, or limitation. The permittee shall be given written notice of any proposed changes in its permit, at least 30 days prior to the effective date of such change, unless a shorter time is necessary to protect the treatment plant, protect human health or the environment.

3. Permit Transfer

Wastewater Discharge Permits are issued to a specific user for a specific operation and shall not be assigned or transferred to another discharger or to another location without 30 days prior notice to the DUWA representative of the change and the written approval of the DUWA representative.

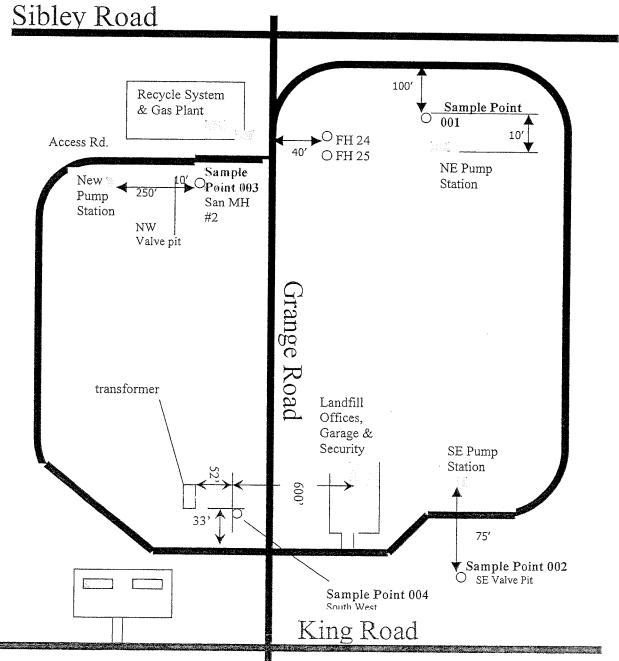
4. Permit Revocation

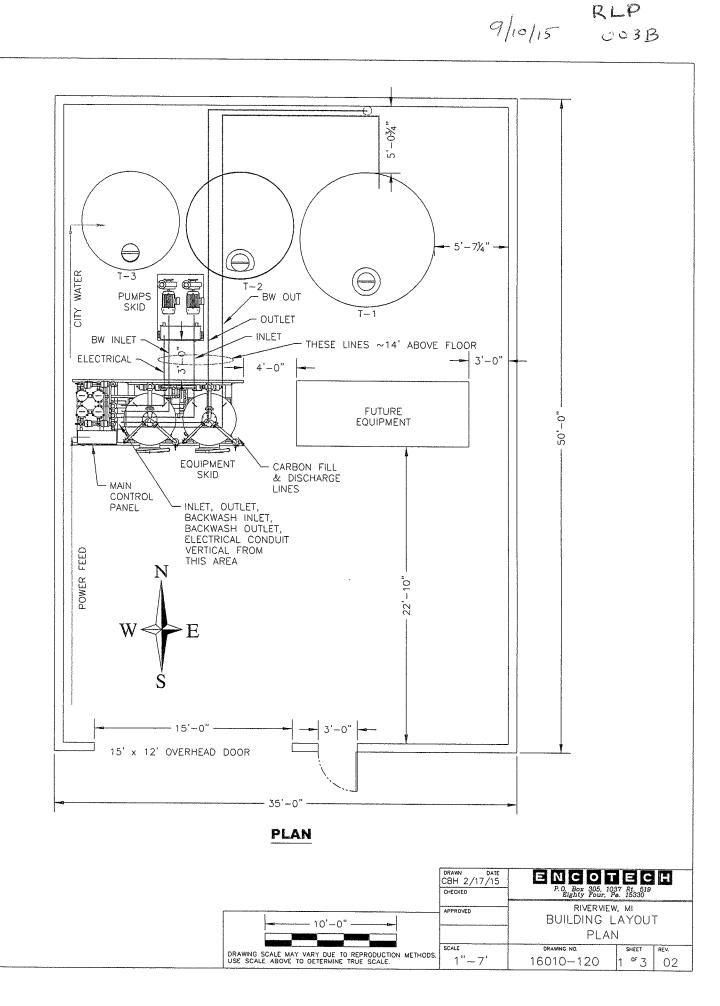
The DUWA representative may, with written notice revoke the discharge permit for the following reasons:

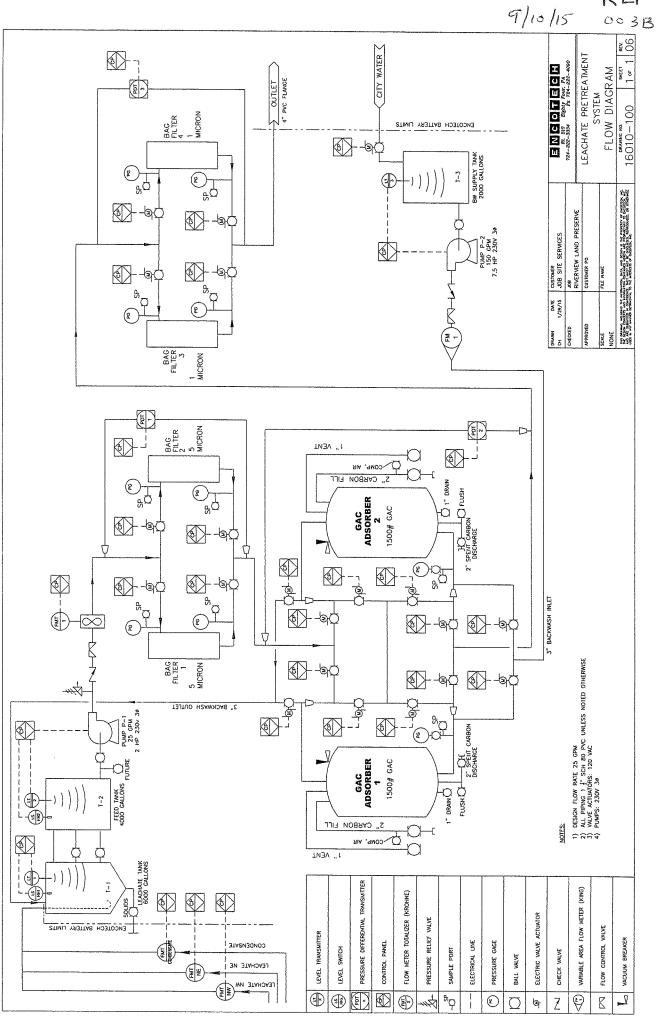

- a. Violation of the terms and conditions of the permit, local Ordinances, State and Federal laws, Statutes, and Regulations.
- b. Failure to factually report the wastewater constituents and characteristics of the discharge.
- c. Failure to report significant changes in wastewater constituents and characteristics.
- d. Refusal of reasonable access to the permittee's premises by DUWA representative for the purpose(s) of inspection or monitoring.
- e. Failure to pay fines, penalties or costs incurred by the DUWA, pursuant to Article IV., Section 6.

Non-compliant Industrial Users shall be notified of the proposed termination of their Wastewater Discharge Permit and be given an opportunity to show cause under Section 6.04.1 of this Regulation why the proposed action should not be taken.

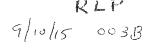
- 5. Emergency Suspension of Service and Discharge Permits
 - a. The DUWA representative may, for good cause, suspend the wastewater treatment service and the Wastewater discharge Permit of a discharger if the DUWA representative finds that an actual or threatened discharge presents or may present an imminent or substantial danger to the health or welfare of persons, substantial danger to the environment, or an interference or passthrough.
 - b. A discharger who is notified of the suspension of wastewater treatment service and/or the Discharger's Wastewater discharge Permit, shall within a reasonable period of time, as determined by the DUWA representative, cease all discharges.
 - c. If a discharger fails to comply voluntarily with the suspension order within the specified time, the DUWA representative shall take such steps as deemed

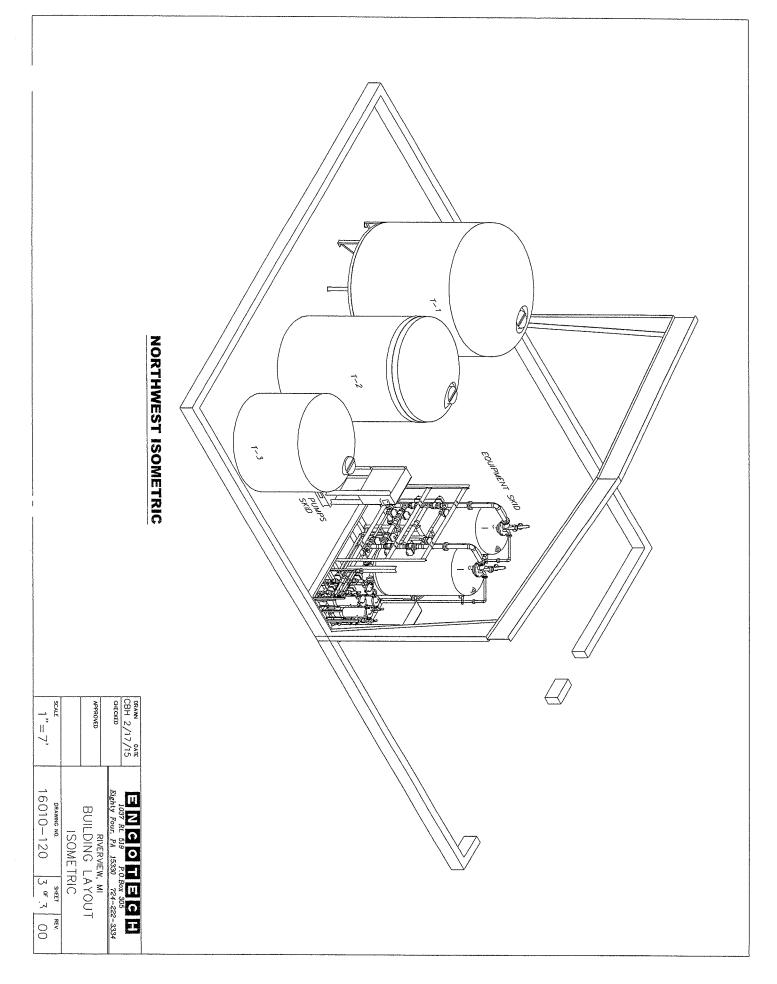

necessary, including severance of the sewer connection, to prevent or minimize damage to the POTW, its receiving waters, or endangerment to any individual.


- d. The DUWA shall allow the User to recommence its discharge when the user has demonstrated to the DUWA's satisfaction that the endangerment has passed, unless termination proceedings are initiated against the user.
- e. A User that is responsible, in whole or in part, for any discharge presenting imminent endangerment shall submit a full report to the DUWA representative within five (5) days of the incident. This report shall be a detailed written statement describing the causes of the harmful contribution and the measures taken to prevent any future occurrence. The information in this report shall be considered during any related action by the DUWA representative.
- f. Local communities whose wastewater is transported or treated by the facilities of the DUWA may join with the DUWA representative in enforcement action and take such other action to effectuate the Regulation.
- g. Failure of the contracting community to join in the enforcement action shall not limit the DUWA's representative to enforce this Regulation and the provisions of this section as to any discharger.



Attachment C MLF 5/30/03 Permit No. 10804





KLP

GRETCHEN WHITMER GOVERNOR DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY

LANSING

LIESL EICHLER CLARK DIRECTOR

May 7, 2020

Mr. Jeffrey Dobek, Assistant City Manager City of Riverview 14100 Civic Park Drive Riverview, Michigan 48193

Dear Mr. Dobek:

SUBJECT: Application for Solid Waste Disposal Area Operating License; City of Riverview; Riverview Land Preserve; Waste Data System Number 399054; License Number 9600

Staff of the Department of Environment, Great Lakes, and Energy (EGLE), Materials Management Division (MMD), has reviewed your application for a municipal solid waste landfill, known as Riverview Land Preserve, located in the city of Riverview, Wayne County, Michigan. This review was conducted under the provisions of Part 115, Solid Waste Management, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended.

Based upon our review of your application, your operating license is hereby granted. Enclosed is your license with operating stipulations.

Should you require further information, please contact Mr. Greg Morrow, Warren District Assistant Supervisor, MMD, at 586-753-3852; MorrowG@michigan.gov; or EGLE, 27700 Donald Court, Warren, Michigan 48092.

Sincerely,

Rhonda S. Oyer, Manager ^V Solid Waste Section Materials Management Division 517-897-1395

Enclosure

cc: Wayne County Department of Public Services City of Riverview Clerk Mr. Gregg Morrow, EGLE-Warren Facility File

EGLE Michigan Department of Environment, Great Lakes, and Energy Materials Management Division SOLID WASTE DISPOSAL AREA OPERATING LICENSE

Effective April 22, 2019, the Michigan Department of Environmental Quality, by Executive Order Number 2019-06, became the Michigan Department of Environment, Great Lakes, and Energy (EGLE). Effective April 22, 2019, the Waste Management and Radiological Protection Division became the Materials Management Division (MMD).

This license is issued under the provisions of Part 115, Solid Waste Management, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended, MCL 324.11501 <u>et seq</u>., and authorizes the operation of this solid waste disposal area (Facility) in the state of Michigan. This license does not obviate the need to obtain other authorizations as may be required by state law.

FACILITY NAME: Riverview Land Preserve

LICENSEE/OPERATOR: City of Riverview

FACILITY OWNER: City of Riverview

PROPERTY OWNER: City of Riverview

FACILITY TYPE(S): Municipal Solid Waste Landfill

FACILITY ID NUMBER: 399054

COUNTY: Wayne

LICENSE NUMBER: 9600

ISSUE DATE: May 7, 2020

EXPIRATION DATE: May 7, 2025

FACILITY DESCRIPTION: The Riverview Land Preserve, a municipal solid waste landfill, consists of 403.11 acres located at 20863 Grange Road, City of Riverview, Wayne County, Michigan, as identified in Attachment A and fully described in this license.

AREA AUTHORIZED FOR DISPOSAL OF SOLID WASTE: As described in Attachment A and Item 2 of this license.

RESPONSIBLE PARTY: Mr. Jeffrey Dobek, Assistant City Manager City of Riverview 14100 Civic Park Drive Riverview, Michigan

734-281-4263

RENEWAL OPERATING LICENSE: This License Number 9600 supersedes and replaces Solid Waste Disposal Area Operating License Number 9463 issued to City of Riverview on January 15, 2016.

This license is subject to revocation by the Director of the Michigan Department of Environment, Great Lakes, and Energy, if the Director finds that this Facility is not being constructed or operated in accordance with the approved plans, the conditions of a permit or license, Part 115, or the rules promulgated under Part 115. Failure to comply with the terms and provisions of this license may result in legal action leading to civil and/or criminal penalties pursuant to Part 115. This license shall be available through the licensee during its term and remains the property of the Director.

THIS LICENSE IS NOT TRANSFERABLE.

Plunda S. Cyer

Rhonda S. Oyer, Manager, Solid Waste Section Materials Management Division

EQP 5203e (Rev. 04/2019)

The licensee shall comply with all terms of this license and the provisions of Part 115 and the administrative rules implementing Part 115 (Part 115 Rules). This license includes the license application and any attachments to this license.

- 1. The licensee shall operate the Facility in a manner that will prevent violations of any state or federal law.
- 2. The following portions of the Facility are authorized to receive solid waste by this license:

ACTIVE PORTIONS NOT AT FINAL GRADE: The area(s) identified as Cell 1 (4.94 acres), Cell 2 (11.49 acres), Cell 3 (14.12 acres), Cell 4 (10.74 acres), Cell 4 Slope Cap (3.63 acres), Cell 4 Slope Cap Extension (3.97 acres), Cell 5 (10.47 acres), Cell 5 Slope Cap (6.15 acres), Cell 6 (12.37 acres), Cell 6 Slope Cap (3.50 acres), Cell A North (7.28 acres), part of Cell 7 Overfill (48.81 acres), and "Interim Cover Area without Future Vertical Expansion" (4.39 acres) were authorized to receive waste by the previous license. This area's total acreage is 141.86 acres.

3. The following portions of the Facility **WILL BE** authorized to receive solid waste by this license following approval by EGLE of construction certification:

UNCONSTRUCTED AREA(S) WITH FINANCIAL ASSURANCE: The area(s) identified as part of Cell 7 overfill overlying portions of Cell A, totaling 9.0 acres, are included in the calculation of financial assurance as required by Section 11523 of Part 115. This portion(s) of the Facility shall be authorized to receive waste, as part of this license, when acceptable certification is submitted to EGLE, as required by Section 11516(5) of Part 115, and determined by EGLE to be consistent with Part 115 and the Part 115 Rules. The certification shall verify that construction of this area(s) was in accordance with the Construction Permit(s) listed in Item 8 of this license, Part 115, and the Part 115 Rules.

4. The following portions of the Facility are **NOT** authorized to receive solid waste by this license:

CLOSED UNIT(S) OR A PORTION OF A UNIT WHERE THE FINAL COVER HAS BEEN CERTIFIED CLOSED AND ACCEPTED BY EGLE: The following unit(s) and/or portion(s) are closed:

EXISTING UNIT(S): The unit(s) or portion(s) of unit(s) identified as The portions of the unit identified as Closed North Area (51.5 acres - originally 67.99 acres, but reduced by 16.49 acres now included in Cell 7 overfill area) and 2001 North Slope Closure (8.92 acres) had final closure certified on December 15, 1992, and February 12, 2002, respectively. This certification was reviewed and approved by EGLE on April 8, 1993, and February 23, 2005, respectively. This area's total acreage is 60.42 acres.

- 5. The attached map (Attachment A) shows the Facility, the area permitted for construction, monitoring points, leachate storage units, site roads, other disposal areas, and related appurtenances.
- 6. Issuance of this license is conditioned on the accuracy of the information submitted by the Applicant in the Application for License to Operate a Solid Waste Disposal Area (Application) received by EGLE on January 15, 2020, and any subsequent amendments. Any material or intentional inaccuracies found in that information is grounds for the revocation or modification of this license and may be grounds for enforcement action. The licensee shall inform EGLE's MMD Warren District Supervisor, of any inaccuracies in the information in the Application upon discovery.
- 7. This license is issued based on EGLE's review of the Application, submitted by City of Riverview, for the Riverview Land Preserve, dated January 15, 2020, and revised on February 20, 2020. The Application consists of the following:
 - a. Application Form EQP 5507.
 - b. Application fee in the amount of \$10,000.00.
 - c. Certification of construction by NA, dated NA.
 - d. Waste Characterization: N/A.

e. Restrictive Covenant:

The Riverview Land Preserve restrictive covenant on 289.888 acres is on file at the Wayne County Register of Deeds recorded on May 24, 2012, as Liber 49853 pages 1336. A copy is on file with EGLE.

- f. Perpetual Care Fund Agreement, established as an escrow account, signed by Mr. Robert Elliot, City Manager, City of Riverview on January 27, 1997, was executed by EGLE on March 10, 1997.
- g. Financial Assurance.
 - i. Financial Assurance Required:

The amount of financial assurance required for this Facility was calculated based on the calculation worksheet form EQP 5507A entitled, "Form A, Financial Assurance Required," and is \$17,698,810.32.

The Facility has provided financial assurance totaling \$17,801,972.80, based on the requirements of Section 11523 of Part 115, consisting of a combination of the Perpetual Care Fund established under Section 11525 of Part 115, bonds, and the financial capability of the Applicant as evidenced by a financial test. The financial assurance mechanisms used by the Facility are summarized below in Items ii, iii, and iv, respectively.

ii. Financial Assurance Provided Via a Perpetual Care Fund:

The Perpetual Care Fund Agreement statement showed a balance of \$4,047,836.75 in the Facility's Perpetual Care Fund as of December 31, 2019. Of this amount, EGLE has granted the request to use \$4,047,836.75 toward the total amount of financial assurance required.

iii. Financial Assurance Provided Via Bond:

The following financial assurance has been received from the Applicant to meet the amount of financial assurance required:

Escrow Account \$13,754,136.05 Total Amount Received: \$13,754,136.05

- iv. Financial Assurance Provided Via a Financial Test for a Type II Landfill: N/A:
- v. Financial Assurance Updates Required:

For Type II landfills, the financial assurance cost estimates of closure and postclosure activities must be updated annually and the corresponding requisite amount of financial assurance must be adjusted annually for the costs of inflation. The corresponding financial assurance, as adjusted for inflation and other factors, is due one year from the date of this license, and each year thereafter.

- vi. Other Required Financial Assurance: N/A.
- 8. The following documents approved with Construction Permit Numbers 0216, 0365, and 4060 issued to the City of Riverview for the Riverview Land Preserve on March 28, 1990, September 30, 1998, and April 8, 2004, respectively, are incorporated in this license by reference:
 - a. Environmental Assessment received by the EGLE on March 8, 1989.
 - b. Engineering Report prepared by Hennessey Engineers Incorporated dated January 1990 and revised in March 1990.

- c. Engineering plan set (30 sheets) titled "Riverview Land Preserve Proposed Expansion," prepared by Hennessey Engineers Incorporated, dated 1990.
- d. Engineering report titled "Stormwater Drainage Plan, Riverview Land Preserve," Riverview, Michigan, dated May 1998 prepared by EMCON.
- e. Engineering plans, sheets 1-13 titled "Permit Modification Plans for Riverview Land Preserve, Final Grading, and Stormwater Management Plan," prepared by EMCON and dated May 1998, and revised September 21, 1998, March 28, 2001, and June 14, 2001.
- f. "Application for Vertical Expansion," Riverview Land Preserve, prepared by Shaw EMCON/OWT, Inc., dated December 12, 2003, and revised on March 30, 2004.
- g. Engineering plans titled "Riverview Land Preserve Vertical Expansion," prepared by Shaw EMCON/OWT, Inc., dated December 2003, and revised on March 5, 2004, March 18, 2004, and March 26, 2004.
- 9. The following additional documents, approved since the issuance of the construction permit(s) referenced in Item 8, are incorporated in this license by reference:
 - a. Work Plan for groundwater monitoring report prepared by Hennessey Engineers, Inc., dated February 6, 1991.
 - b. Monitor Well Installation/Hydrogeological report, prepared by Hennessey Engineers, Inc., dated August 1992.
 - c. Engineering Plans for Cell II of Phase I and Cell III of the Phase II Design and Construction Quality Assurance Plans, dated 1992 and 1993, respectively.
 - d. Hydrogeological Report Addendum, prepared by Hennessey Engineers, Inc., dated July 1993.
 - e. Closure report for the "Closed North Area," approved April 8, 1993.
 - f. Monitoring Wells, Abandonment Work Plan, dated May 1994.
 - g. Hydrogeological Monitoring Plan submitted October 1995, and revised November 1997, April 1998, July 2000, September 2000, and February 2007.
 - h. Groundwater Monitoring Parameter Waiver Request, prepared by EMCON, dated December 1997.
 - i. Monitoring Well Repair and Well Abandonment Summary Report, prepared by EMCON, dated May 1997.
 - j. Work Plan for Monitoring Well Replacement and Abandonment, prepared by EMCON, dated March 13, 1998.
 - k. Engineering report titled "Final Cap Design Changes," dated April 2, 2001, and revised June 14, 2001.
 - I. Engineering report titled "Construction Documentation Report, 2001 North Slope Closure," prepared by EMCON/OWT, Inc., dated November 2001.
 - m. Engineering plans titled "City of Riverview, Riverview Land Preserve, Cell 4 Construction Plans" (6 sheets), dated February 2002.
 - n. A letter with the subject "Construction Upgrade Cell 4 Riverview Land Preserve" dated June 5, 2002.
 - o. Engineering report titled "Construction Documentation Report Cell 4 Construction," dated October 2002.
 - p. Leachate Storage Tank Improvement Documentation dated December 16 and 17, 2002, and approved by EGLE on February 24, 2003.

- q. Engineering report titled "Construction Documentation Report, Cell 4 Slope Cap Extension Construction," dated December 2004.
- r. The engineering document titled "Landfill Gas Collection and Control System Design Plan," dated July 2004 including Drawings numbered 1 through 6 of the Engineering Plan Set titled "Plans for Gas Collection and Control System Design," dated June 2004, with revisions to Drawing No. 3, dated February 2, 2006, and Drawing Number 7 titled "Isopach for Remaining Permitted Airspace," dated October 26, 2004, and received by the EGLE on February 13, 2006.
- s. Section 9.0, "Leachate Recirculation" of the Comprehensive Operating Plan, dated May 24, 2005, received by the EGLE on June 9, 2005.
- t. Drawings numbered 1 through 6 of the Engineering Plan Set titled "Leachate System Upgrades," dated October 2005 and received by the EGLE on February 2, 2006.
- u. Drawing No. 2 titled "Cell 5 Construction Project, Cell 5 Soil Boring Locations," dated May 18, 2006, and received by the EGLE via e-mail on June 14, 2006.
- v. Engineering drawing titled "Addendum 1, City of Riverview, Riverview Land Preserve, Wayne County, Michigan, Cell 5 Construction Project, In-Line Flow Meter Detail," dated June 12, 2006, and received by the EGLE via e-mail on June 14, 2006.
- w. Engineering document titled "Cell 5 Construction Documentation Report," prepared by Cornerstone Environmental Group, LLC, dated February 2007 and revised June 18, 2007.
- x. Certification document titled "Cell 5 Geomembrane Liner Repair Report" prepared by Cornerstone Environmental Group, LLC, dated August 10, 2007, and revised on September 10, 2007, via an electronic mail submittal.
- y. Procedural document titled "Riverview Land Preserve, Special Waste Management Program," dated August 2007, and submitted with a transmittal letter dated August 23, 2007.
- z. Engineering plan set (consisting of a title sheet and sheets numbered 1 through 6) titled "Plans for the 2008 Leachate System Upgrades at City of Riverview, Riverview Land Preserve, Wayne County Michigan," dated October 2008, and submitted with a transmittal letter dated November 7, 2008, and received by the EGLE on November 12, 2008.
- aa. Engineering document titled "Cell 6 Construction Documentation Report" prepared by Cornerstone Environmental Group, LLC, dated November 2010, and revised February 2011.
- bb. A revised "Alternate Daily Cover Operations Plan," prepared by Cornerstone Environmental Group, LLC, dated February 2011, and revised February 25, 2011. This plan revises the previously approved "Alternate Daily Cover Materials Operations Plan" dated August 2000.
- cc. Letter request from the City of Riverview (with 3 supporting attachments) dated June 15, 2011, and supplemented July 12, 2011, requesting approval to construct/operate a 100 yard, Riverview Police Department Firing range on the 113 acre soil borrow area adjacent to the landfill.
- dd. Letter report titled "Riverview Land Preserve Sand Protective/Drainage Layer Cell 6, Erosion Corrective Measures" prepared by Cornerstone Environmental Group, LLC, dated March 6, 2012.
- ee. Letter report titled "Riverview Land Preserve Sand Protective/Drainage Layer Cell 6; Erosion Corrective Measures" prepared by Cornerstone Environmental Group, LLC, dated April 6, 2012, and received by the EGLE on April 9, 2012.

- ff. Engineering plan set titled "Plans for the CNG Fueling Station at City of Riverview, Riverview Land Preserve, Wayne County, Michigan", prepared by Cornerstone Environmental Group, LLC, dated November 2012 and submitted with an explanatory transmittal letter dated November 28, 2012, and a revised operational document titled H2S Media Change Out Procedure, submitted via electronic mail by Cornerstone Environmental Group, LLC on January 3, 2013.
- gg. Engineering plan set (drawings numbered 1 through 4) titled "Bid Plans for the 2014 GCCS Construction at City of Riverview, Riverview Land Preserve, Wayne County, Michigan," prepared by Cornerstone Environmental Group, LLC, dated June 2014 and received by the EGLE on June 16, 2014, via electronic mail submittal.
- hh. Engineering plan set titled "Construction Plans for the Leachate Pretreatment System Pre-Engineered Metal Building and Process Systems at City of Riverview, Riverview Land Preserve, Wayne County, Michigan," prepared by Cornerstone Environmental Group, LLC, dated December 2014 and revised March 2015.
- ii. Letter report (with 8 attachments) titled "Riverview Land Preserve, Final Cover Geomembrane Repairs," prepared by Cornerstone Environmental Group, LLC, dated March 10, 2015.
- jj. Engineering plan set (Drawings numbered 1 through 7) titled "Plans for the 2015 GCCS Construction & North Slope Repair at City of Riverview, Riverview Land Preserve, Wayne County, Michigan," prepared by Cornerstone Environmental Group, LLC, dated March 2015 and received by the MMD via e-mail on April 10, 2015.
- kk. Letter report (including Attachments A through E) titled "Riverview Land Preserve, Horizontal Collection Trench and Final Cover Repairs," prepared by Cornerstone Environmental Group, LLC, dated November 2, 2015.
- II. Revised engineering drawings numbered 3B, 4, 8A, and 9L from the previously approved Construction Permit plan set titled "Riverview Land Preserve Vertical Expansion" (dated December 2013 and revised March 2004), prepared by Cornerstone Environmental Group, LLC, dated March 17, 2016, and received by the EGLE via electronic mail submittal on March 29, 2016.
- mm. A revised version of the document titled "Construction Quality Assurance Plan, Riverview Land Preserve, City of Riverview, Wayne County, Michigan", prepared by Cornerstone Environmental Group, LLC, dated June 2016 and received by the EGLE via e-mail on June 9, 2016.
- nn. Engineering plan set (drawings numbered 1 through 9) titled "Plans for the 2016 GCCS Construction at City of Riverview, Riverview Land Preserve, Wayne County, Michigan", prepared by Cornerstone Environmental Group, LLC, dated March 2016 and received by the EGLE on June 16, 2016, via electronic mail submittal.
- oo. Engineering drawings (numbered 1 and 2) titled "Southeast Pump Station Outlet Re-Route, Site Plan and Leachate Details", prepared by Cornerstone Environmental Group, LLC, dated November 4, 2016, and received by the EGLE on November 21, 2016, via electronic mail submittal.
- pp. Revised pipe capacity calculations for the Cell 7-North leachate discharge pipes based on new proposed liner/pipe grades and revised drainage areas, prepared by Cornerstone, dated August 5, 2016, and received by the EGLE in a submittal dated November 9, 2016.
- qq. Updated slope stability evaluation for Cell 7-North to re-evaluate slope stability based on new proposed liner grades/berm height and actual soil and material properties for the project area, prepared by Cornerstone, and received by the EGLE in a submittal dated November 9, 2016.
- rr. Revised flow capacity calculations for the Cell 7 geocomposite drainage material, prepared by Cornerstone, dated October 18, 2016, received by the EGLE in a submittal dated November 9, 2016, and supplemented in an e-mail from Cornerstone dated January 6, 2017.
- ss. Revised engineering drawings numbered 3B, 4, 8A, 8B, 8C, 9D, 9E, 9F, 9K and 9L from the previously approved Construction Permit plan set titled "Riverview Land Preserve Vertical Expansion" (dated December 2003 and

revised March 2004), prepared by Cornerstone Environmental Group, LLC (Cornerstone), dated November 4, 2016, and February 6, 2017, and received by the EGLE in submittals dated November 9, 2016, and February 6, 2017.

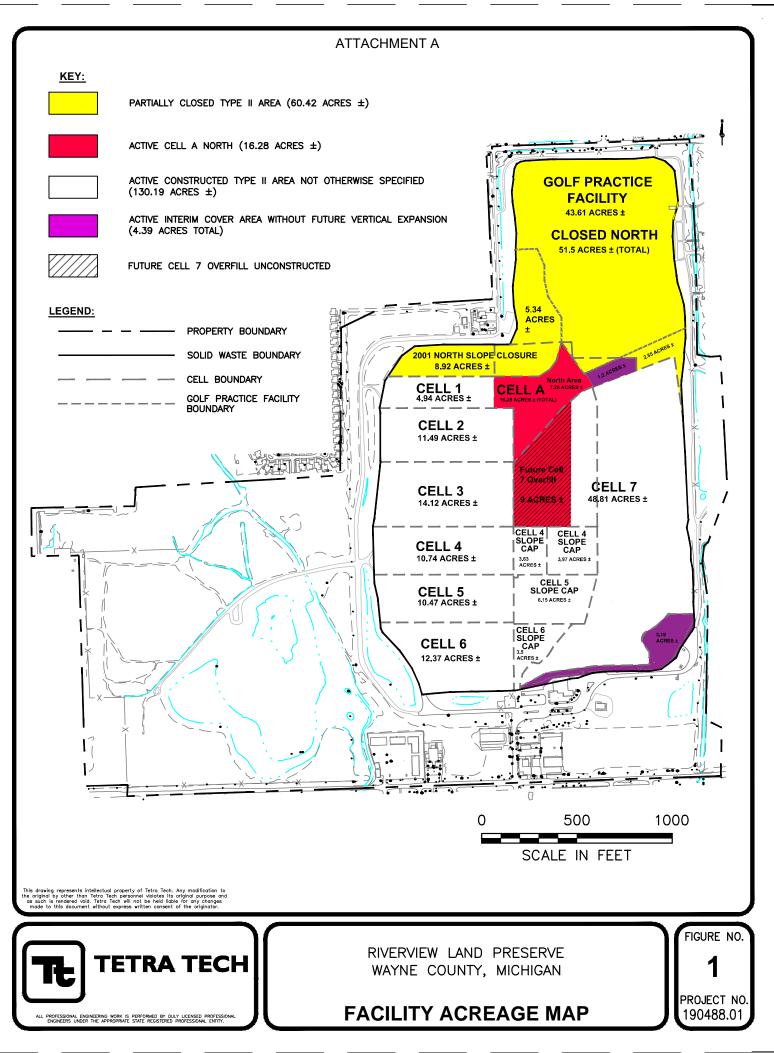
- tt. New engineering drawing numbered 9E2 for addition to the previously approved Construction Permit plan set titled "Riverview Land Preserve Vertical Expansion" (dated December 2003 and revised March 2004), prepared by Cornerstone, dated February 6, 2017, and received by the EGLE in a submittal dated February 6, 2017.
- uu. Evaluation and data for triaxial shear tests conducted on soils from the constructed Cell 7-North berm, prepared by Cornerstone in a Memorandum dated November 17, 2015, and received by the EGLE in a submittal dated February 6, 2017.
- vv. Engineering report titled "Cell 7 North Construction Documentation Report", prepared by Cornerstone Environmental Group, dated March 2017 and revised on May 5, 2017 in response to MMD staff comments.
- ww. Record drawings (numbered 1 through 15) titled "Record Drawings for Cell 7 North Construction at City of Riverview, Riverview Land Preserve, Wayne County, Michigan", prepared by Cornerstone Environmental Group, dated March 2017.
- xx. Revised engineering drawings numbered 3BR and 9E2, dated October 3, 2017, which amend the previously approved Construction Permit plan set titled "Riverview Land Preserve Vertical Expansion" (dated December 2003 and revised March 2004), and supplemental drawings numbered I-1, I-2, and I-3 dated August 30, 2017, all of which relate to design changes to the Cell 7 Phase 3 berm and base grades.
- yy. Engineering detail titled "Cell 7 Flowmeter & Valve Vault Proposed Modifications", prepared by Cornerstone Environmental Group, dated November 30, 2017, and received by the EGLE as an attachment to the Response to Violation Notice letter dated November 29, 2017.
- zz. Engineering report titled "Cell 7 Phase 2 Construction Documentation Report", prepared by Cornerstone Environmental Group, dated February 2018 and revised on April 19, 2018, in response to MMD staff comments.
- aaa. Record drawings titled "Record Plan Set for Cell 7 Phase 2 Construction at City of Riverview, Riverview Land Preserve, Wayne County, Michigan", prepared by Cornerstone Environmental Group, dated February 2018 and revised April 18, 2018, (with respect to Sheet 5P).
- bbb. Engineering plan set (Drawings numbered 1 through 8) titled "Plans for the 2018 Phase 2 GCCS Construction at City of Riverview, Riverview Land Preserve, Wayne County, Michigan ", prepared by Cornerstone Environmental Group, LLC, dated May 2018 and received by the MMD via e-mail on June 11, 2018.
- ccc. Cell 7 Phase 3 "Revised Sump Detail" (identified as Sheet No. 12) prepared by Tetra Tech dated July 23, 2019 and received by the MMD via e-mail on July 24, 2019.
- ddd. Engineering plan set (Drawings numbered 1 through 8) titled "Plans for the 2019 GCCS Construction at City of Riverview, Riverview Land Preserve, Wayne County, Michigan ", prepared by Tetra Tech, dated July 2019 and received by the MMD via e-mail on August 16, 2019.
- eee. Engineering report titled "Cell 7 Phase 3 Construction Report", prepared by Tetra Tech, dated September 6, 2019 and revised on October 17, 2019, and November 7, 2019.
- fff. Record drawings titled "Record Plans for Cell 7 Phase 3 Construction at City of Riverview, Riverview Land Preserve, Wayne County, Michigan", prepared by Tetra Tech, dated September 2019 and revised October 17, 2019 (with respect to Sheets 3C and 9).
- ggg. Engineering plans (5 sheets) submitted on February 6, 2020 for the emergency leachate force main proposed for Cells 4, 5, and 6 at Riverview Land Preserve.

- 10. Consent Order/Judgment Number: N/A.
- 11. The licensee shall repair any portion of the certified liner or leachate collection system that is found to be deficient or damaged during the term of this license unless determined otherwise by EGLE.
- 12. The licensee shall have repairs to any portion of the certified liner or leachate collection system recertified by a registered professional engineer in accordance with R 299.4921 of the Part 115 Rules and approved by EGLE before receiving waste in that portion of the certified liner or leachate collection system. The licensee shall submit the recertification to EGLE's MMD Warren District Supervisor, for review and approval.
- 13. The licensee shall conduct hydrogeological monitoring in accordance with the approved hydrogeological monitoring plan, dated October 1995 and revised November 1997, April 1998, July 2000, September 2000, and February 2007. The sampling analytical results shall be submitted to EGLE's MMD Warren District Office.
- 14. Modifications to the approved hydrogeological monitoring plan referenced in Item 13 may be approved, in writing, by EGLE's MMD Warren District Supervisor. Proposed revisions must be submitted in a format specified by EGLE.
- 15. Leachate may be recirculated if a leachate recirculation plan has been approved, in writing, by EGLE's MMD Warren District Supervisor.
- 16. Modifications to approved engineering plans that constitute an upgrading, as defined in R 299.4106a(I) of the Part 115 Rules, may be approved, in writing, by EGLE's MMD Warren District Supervisor.
- 17. Requests for alternate daily cover may be approved, in writing, by EGLE's MMD Warren District Supervisor.
- 18. Leakage Control Criteria:

The active portions of the unit(s) authorized to receive waste by this license is a monitorable unit(s) which is located over a natural soil barrier and that is in compliance with the provisions of R 299.4422(2) of the Part 115 Rules.

19. VARIANCES: The licensee is granted the following variance(s) from Part 115 and/or the Part 115 Rules: None.

20. SPECIAL CONDITIONS:


- a. The licensee shall place a compacted layer of not less than six inches of earthen material, unless an exemption is granted, of suitable cover material on all exposed solid waste by the end of each working day, as required by R 299.4429(1) of the Part 115 Rules. Suitable cover shall be either uncontaminated soil or an alternate cover approved by the MMD, listed in Item i, below. Alternate cover shall be restricted as indicated in Item ii and applied as per the approved operational plan submitted by the licensee.
 - i. Approved alternate cover shall be any of the following:

Product/Waste Material	Source	Monthly Volume
(1) Classes A and B Alternate Daily Cover Materials as specified in the approved Alternate Daily Cover Mater Operations Plan dated Augu and revised February 2011		Varies
(2) Contaminated Soils	I-94 and Mt. Elliot Site Detroit, MI (construction site)	N/A (single receipt of ~ 100,000 tons)

(3) Contaminated Soils	Brush-Watson Development Detroit, MI (construction site)	N/A (single receipt of ~60,000 cy)
(4) Contaminated Soils	3 locations Detroit, MI (construction sites)	N/A (single receipt of ~12,000 cy)
(5) Contaminated Soils	Meijer Out lot West Rd. and Allen Rd. Woodhaven, MI	N/A (single receipt of ~40,000 cy)
(6) Contaminated Soils	Construction Site Northline Rd. and Telegraph Rd. Taylor, Ml	N/A (single receipt of ~25,000 cy)

- ii. The above materials are approved for daily cover when used in the following manner:
 - (1) The licensee shall use the material as daily cover only. The material cannot be used for road building or fill in other areas of the Facility's operation.
 - (2) The licensee shall maintain copies of the testing performed on Class B and Class C materials in the facility operating record.
 - (3) The licensee shall only stockpile material in a secure manner within the active cell.
 - (4) This approval does not preclude the licensee from disposing of the material as waste in the active fill area instead of using the material as daily cover.
 - (5) This approval shall immediately become void upon documentation by EGLE that the alternative cover is not being used in accordance with listed conditions, that the alternative cover is not providing the necessary protection, that the material no longer meets the alternative daily cover guidelines, or that the process producing the waste material has changed.
 - (6) If the material does not meet the guidelines from Attachment 2 of Policy and Procedure OWMRP-115-10, for nonvolatiles, the licensee shall ensure that fugitive dust emissions from this material do not occur. Acceptable methods to ensure fugitive emissions do not occur are:
 - (a) Implement a schedule to wet down material; or
 - (b) Cover the material with a tarp; or
 - (c) Apply an approved foam or other appropriate commercial dust control product.
 - (7) This approval to use alternative cover shall expire upon expiration of this operating license.
- b. The Facility may recirculate leachate in accordance with Section 9.0, Leachate Recirculation of the Comprehensive Operating Plan, dated May 24, 2005, received by the EGLE on June 9, 2005.
- 21. **TERM**: This license shall remain in effect until its expiration date, unless revoked or continued in effect, as provided by, the Administrative Procedures Act, 1969 PA 306, as amended, or unless superseded by the issuance of a subsequent license.

END OF LICENSE

September 16, 2021

Kurian Joychan Industrial Pretreatment Program Manager 797 Central Avenue Wyandotte, Michigan 48192

Re: Request for Time proportional sampling or grab sampling Wastewater Discharge Permit Number D-10804 Riverview Land Preserve, Riverview Michigan

Project Number 4211498.008

Dear Mr. Joychan:

On behalf of the City of Riverview and the Riverview Land Preserve (RLP), Cornerstone Environmental Group, LLC, a wholly owned subsidiary of Tetra Tech (Tetra Tech) is requesting approval to continue collection of discharge samples using the grab sampling technique at the Riverview Land Preserve.

The RLP has been discharging to the DUWA system for many years. Samples have been collected using 24hour composite collection as well as grab sampling with approval from DUWA. We have an extensive number of sample results in our database going back to 2006. While there is some variability from quarter to quarter (due to rainfall and waste content) the large body of results that we have collected shows that overall, the leachate characteristics at RLP have been consistent over a long period of time, and irrespective of sampling method. Landfill leachate is generated and collected continuously and is not likely subject to wide swings in results on an hour-to-hour basis. We believe that the continuation of grab sampling at RLP is appropriate for this wastewater stream and request your concurrence and approval to continue in this manner

If you have any questions regarding this request please contact the undersigned at (734) 306-4365.

Sincerely,

CORNERSTONE ENVIRONMENTAL GROUP, LLC - A TETRA TECH COMPANY

En Canderso

Eric Anderson Project Manager

Received 9/16/2021 KJ Received 9/16/2021 Appnoised 9/16/2021

Jennifer Bowyer Senior Project Manager

cc: Site File – Riverview Land Preserve Jeffery Dobek – City of Riverview (Electronically) Randall Pentiuk – City of Riverview Counsel (Electronically)

> TETRA TECH 39395 W. Twelve Mile Road, Suite 103, Farmington Hills, MI 48331 Tel 877.633.5520 Fax 877.845.1456 tetratech.com

APPENDIX C (APPENDIX A OF SUO) DOWNRIVER UTILITY WASTEWATER AUTHORITY LOCAL DISCHARGE LIMITATIONS JANUARY 2020

No	Parameter	Limit (Average Daily Concentrations)	Units
1	Arsenic, Total	1.55	mg/l
2	Cadmium, Total	0.45	mg/l
3	Chromium, Total	10.0	mg/l
4	Copper, Total	1.55	mg/l
5	Cyanide, Total	1.0	mg/l
6	Lead, Total	1.0	mg/l
7	Mercury, Total	<0.0002	mg/l
8	Nickel, Total	6.0	mg/l
9	Silver, Total	0.25	mg/l
10	Zinc, Total	4.5	mg/l
11	Fats, Oil, and Grease (FOG)	500.0	mg/l
12	Phenolics, Total	1.0	mg/l
13	Polychlorinated Biphenyls (PCBs)	<0.0002	mg/l
14	pH	5.0 - 11.5	S.U.
15	Carbonaceous Biochemical Oxygen Demand (CBOD5)	2,200	mg/l
16	Total Phosphorus	53.4	mg/l
17	Total Suspended Solids (TSS)	2,600	mg/l
18	Chloroform	0.25	mg/l
19	Methylene Chloride	1.0	mg/l
20	Tetrachloroethylene	0.25	mg/l
21	Toluene	1.0	mg/l
22	Trichloroethylene	0.50	mg/l
23	BTEX (Benzene, Toluene, Ethylebenzene, Xylene)	2.0	mg/l

Quantification levels shall not exceed 0.2ug/l for Mercury and PCBs. This paragraph does not authorize the discharge of Mercury or PCBs at levels which are injurious to the designed uses of the waters of the state or which constitute a threat to the public health or welfare. The limits may change if State of Michigan EGLE or EPA requires Control Authority to implement a lower limit.

March 23, 2021

Jeff Dobek Riverview Land Preserve 14100 Civic Park Riverview, MI 48192

Dear Mr. Dobek:

Violation Date: Violation Description: 03/10/2021 Phenolics TRC Daily Limit was exceeded. The Result was 2.35 mg/L while the Daily Limit was 1 mg/L. The Violation occurred for Sample '004' on the Sample Date of '3/10/2021' and for Monitoring Point '003B'.

Enforcement Type: Compliance Due Date: Violation Resolution: LOV Letter of Violation Within 10 days from the receipt of this LOV. 1)This violates the requirements of your class D Wastewater discharge permit and / or provisions of the Downriver Utilities Water Authority Sewer Use Ordinance (DUWASUO), adopted by the DUWA Board Members.

Please provide a written explanation of the violation(s) and a plan for satisfactory correction and prevention of the cause of the violation(s) within 10 days from the receipt of this LOV. Conduct additional sampling for this parameter and submit results within 30 days to show the plant is in compliance with the issued permit. This sampling is in addition to the regular sampling required in the permit.

Failure to comply shall be deemed as a violation of the SUO: and subject to further enforcement action.

DUWA will continue to monitor and sample the wastewater from your facility in accordance with the Industrial Pretreatment Program. Further enforcement measures will be taken against your facility if necessary.

Sincerely,

K Joychaw Mr. Kurian Joychan IPP & Environmental Compliance Manager

City of Riverview: Mr. Jeff Webb File-2 Report Period: 09/11/2020 to 03/11/2021

Veolia North America Industrial Pretreatment Program Compliance Results Report - by Parameter
 Permit
 10804

 Permittee:
 Riverview Land Preserve

 Location:
 14100 Civic Park , Riverview, MI 48193

Phenolics

								8	CONCENTRATION	ATION			MASS	
Sample ID	Auth?	MonPoint	Collection Method	Collection Date	Units	Result	Rest R Flags	Reslt Reporting Adjusted Flags Limit Result	Adjusted Result	Violations	Limit	Result (Ibs/day)	Violations	Limit
004		003B	C/G	09-22-2020	mg/L	<0.10		0.10	0		÷			
004		003B	C/G	11-12-2020	mg/L	2.2			2.2	DT	<u>.</u>			
004		003B	C/G	11-12-2020	mg/L	2.2			2.2	DT	٣			
002	۲	003B	C/G	12-15-2020	mg/L	1.53			1.53	DT				
004		003B	C/G	12-22-2020	mg/L	<0.20		0.20	0		-			
004		003B	C/G	12-22-2020	mg/L	<0.20		0.20	0		-			
004		003B	C/G	12-29-2020	mg/L	<1.0		1.0	0		•			
003		003B	C/G	01-05-2021	mg/L	0.25			0.25		-			
004		003B	C/G	02-18-2021	mg/L	<1.0		1.0	0		۲			
002	۲	003B	C/G	02-25-2021	mg/L	0.34			0.34		÷			
004		003B	C/G	03-04-2021	mg/L	2.64			2.64	DT	•			
004		003B	C/G	03-10-2021	mg/L	2.35			2.35	DT	÷			
Total Concentration Results: 12	Av	Avg: <u>9592</u>	Min: .0000		Max: 2.6400									
Total Mass Results: 0	Avg:	ö	Min:	Max:										
Report Criteria: Monitoring Point(s): 003B							Parameter(s): Phenolics	:(s)						

Page 1 of 1 Printed on 3/23/2021 8:01:11 AM

Allen Park Belleville Brownstown Twp. Dearborn Heights Ecorse Lincoln Park

Downriver Utility Wastewater Authority

River Rouge Riverview Romulus Southgate Taylor Van Buren Twp. Wyandotte

August 8, 2022

Jeffrey Dobek Riverview Land Preserve 14100 Civic Park Riverview, MI 48192

Dear Mr. Dobek:

Violation Date: Violation Description:

Violation Resolution:

 The Violation occurred for Sample '002' on the Sample Date of '7/19/2022' and for Monitoring Point '004'.

 Enforcement Type:
 LOV Letter of Violation

 Compliance Due Date:
 Within 10 days from the receipt of this LOV.

07/19/2022

while the Daily Limit was 1 mg/L.

Within 10 days from the receipt of this LOV. 1)This violates the requirements of your class D Wastewater discharge permit and / or provisions of the Downriver Utilities Water Authority Sewer Use Ordinance (DUWASUO), adopted by the DUWA Board Members.

Phenolics TRC Daily Limit was exceeded. The Result was 2.28 mg/L

Please provide a written explanation of the violation(s) and a plan for satisfactory correction and prevention of the cause of the violation(s) within 10 days from the receipt of this LOV. Conduct additional sampling for this parameter and submit results within 30 days to show the plant is in compliance with the issued permit. This sampling is in addition to the regular sampling required in the permit.

Failure to comply shall be deemed as a violation of the SUO: and subject to further enforcement action.

DUWA will continue to monitor and sample the wastewater from your facility in accordance with the Industrial Pretreatment Program. Further enforcement measures will be taken against your facility if necessary.

Sincerely,

KJarha

Mr. Kurian Joychan Department Manager IPP

City of Riverview: Mr. Jeff Webb File-2

Veolia North America 797 Central Ave., Wyandotte, MI 48192 TEL #: 734.285.5500 Allen Park Belleville Brownstown Twp. Dearborn Heights Ecorse Lincoln Park

Downriver Utility Wastewater Authority

River Rouge Riverview Romulus Southgate Taylor Van Buren Twp. Wyandotte

August 8, 2022

Jeffrey Dobek Riverview Land Preserve 14100 Civic Park Riverview, MI 48192

Dear Mr. Dobek:

Violation Date: Violation Description:

Enforcement Type: Compliance Due Date: Violation Resolution: 07/19/2022

Phenolics TRC Daily Limit was exceeded. The Result was 1.66 mg/L while the Daily Limit was 1 mg/L. The Violation occurred for Sample '002' on the Sample Date of '7/19/2022' and for Monitoring Point '003B'.

LOV Letter of Violation

Within 10 days from the receipt of this LOV. 1)This violates the requirements of your class D Wastewater discharge permit and / or provisions of the Downriver Utilities Water Authority Sewer Use Ordinance (DUWASUO), adopted by the DUWA Board Members.

Please provide a written explanation of the violation(s) and a plan for satisfactory correction and prevention of the cause of the violation(s) within 10 days from the receipt of this LOV. Conduct additional sampling for this parameter and submit results within 30 days to show the plant is in compliance with the issued permit. This sampling is in addition to the regular sampling required in the permit.

Failure to comply shall be deemed as a violation of the SUO: and subject to further enforcement action.

DUWA will continue to monitor and sample the wastewater from your facility in accordance with the Industrial Pretreatment Program. Further enforcement measures will be taken against your facility if necessary.

Sincerely,

KJoycha

Mr. Kurian Joychan Department Manager IPP

City of Riverview: Mr. Jeff Webb File-2

Veolia North America 797 Central Ave., Wyandotte, MI 48192 TEL #: 734.285.5500

Veolia North America Industrial Pretreatment Program Laboratory Analysis Summary

Permit No:10804Permittee:Riverview Land Preserve
007Sample Event Date:07/19/22 0:00

Sampled by:

Sample ID: 002

METHOD OF ANALYSES CONFORM TO REQUIREMENTS OF THE CODE OF FEDERAL REGULATIONS, 40 CFR, PART 136

					Result		Permi	t Limits
Parameter	Analyzed	Method	<u>Units</u>	Result	Flags	In NC	Daily	Monthly
CBOD			mg/L	86			2200	2
PFOA		EPA537 Modified	ng/L	440			12000	
PFOS		EPA537 Modified	ng/L	92		NC	12	
pH		SM	S.U.	7.29		19 (d. 1997)	5-11.5	
Phenolics		SM	mg/L	0.01			1	
Phosphorus		SM	mg/L	1.80			53.4	
Susp. Solids		SM	mg/L	23			2600	
benzene		SM	mg/L	<.01			2.13	
chlorobenzene		SM	mg/L	<.01			2.13	
Ethylbenzene		SM	mg/L	<.01			2.13	
Toluene		SM	mg/L	<.01			1.0	
Cadmium		SM	mg/L	<.002			0.45	
Copper		SM	mg/L	<.01			1.55	
T.Chromium		SM	mg/L	0.10			10	8
Mercury		SM	mg/L	<.0002			0.0002	
Nickel		SM	mg/L	0.099			6	
Lead		SM	mg/L	<.01			1.00	
Silver		SM	mg/L	<.002			0.25	
Zinc		SM	mg/L	<.04			4.5	
Ammonia N		SM	mg/L	800			1000	
Methylene Chlor		SM	mg/L	0.01			1.0	
Bis-(2-et)Phtha		SM	mg/L	<.01			2.13	
Napthalene		SM	mg/L	<.01			2.13	
xylene		SM	mg/L	<.03			2.13	

Reported by:

Date:

August 8, 2022

K Joychand 8/8/2022

38

Veolia North America Industrial Pretreatment Program Laboratory Analysis Summary

Permit No:	10804
Permittee:	Riverview Land Preserve
	004
Sample Event Date:	07/19/22 0:00

Sampled by:

Sample ID: 002

METHOD OF ANALYSES CONFORM TO REQUIREMENTS OF THE CODE OF FEDERAL REGULATIONS, 40 CFR, PART 136

					Result		Permi	t Limits
Parameter	Analyzed	Method	Units	Result	Flags	In NC	Daily	Monthly
CBOD			mg/L	148			2200	
PFOA		EPA537 Modified	ng/L	1500			12000	
PFOS		EPA537 Modified	ng/L	270		NC	12	
pH		SM	S.U.	7.34			5.0-11.5	
Phenolics		SM	mg/L	2.28		NC	1	
Phosphorus		SM	mg/L	4.38				
Susp. Solids		SM	mg/L	5			2600	
Chloroform		SM	mg/L	<.01			0.25	
Toluene		SM	mg/L	<.01			1	<u>19</u>
Cadmium		SM	mg/L	<.002			0.45	
Copper		SM	mg/L	<.01			1.55	
T.Chromium		SM	mg/L	0.40			10	
Mercury		SM	mg/L	<.0002			0.0002	
Nickel		SM	mg/L	0.15			6	
Lead		SM	mg/L	<.01			1.0	
Silver		SM	mg/L	<.002			0.25	
Zinc		SM	mg/L	<.04			4.5	
TTO		SM	mg/L	0.228			2.13	
Volatiles 624		SM	mg/L	0.228			A.1.2	
SemiVolatile625		SM	mg/L	0.019				
BTEX		SM	mg/L	0.016			2.0	
Ammonia N		SM	mg/L	1115				
Methylene Chlor		SM	mg/L	0.011			1	
Tetrachloroethy		SM	mg/L	<.01			0.25	3
trichloroethyle		SM	mg/L	<.01			0.5	

Reported by:

Date:

August 8, 2022

KJoychand 8/8/2022

.

Veolia North America Industrial Pretreatment Program Laboratory Analysis Summary

Permit No:	10804
Permittee:	Riverview Land Preserve
	003B
Sample Event Date:	07/19/22 0:00

Sampled by:

Sample ID: 002

METHOD OF ANALYSES CONFORM TO REQUIREMENTS OF THE CODE OF FEDERAL REGULATIONS, 40 CFR, PART 136

Devenuenter					Result		Permit	t Limits
Parameter	Analyzed	Method	Units	Result	Flags	In NC	Daily	Monthly
CBOD			mg/L	750			2200	
PFOA		EPA537 Modified	ng/L	4500			12000	
PFOS		EPA537 Modified	ng/L	560		NC	12000	
pH		SM	S.U.	7.57			5-11.5	
Phenolics		SM	– mg/L	1.66		NC	1	
Phosphorus		SM	mg/L	4.13		ine	53.4	
Susp. Solids		SM	mg/L	15			2600	
benzene		SM	mg/L	<.01			2.13	
chlorobenzene		SM	mg/L	<.01			2.13	
Ethylbenzene		SM	mg/L	<.01			2.13	
Toluene		SM	mg/L	<.01			1.0	
Cadmium		SM	mg/L	<.002			0.45	
Copper		SM	mg/L	<.01			1.55	
T.Chromium		SM	mg/L	0.20			10	
Mercury		SM	mg/L	<.0002			0.0002	
Nickel		SM	mg/L	0.15			6	
Lead		SM	mg/L	<.01			1.00	34
Silver		SM	mg/L	<.002			0.25	
Zinc		SM	mg/L	0.10	1	CI -	4.5	
Ammonia N		SM	mg/L	1020	1	NC	1000	
Methylene Chlor		SM	mg/L	<.01	0	18/20.	2210	
Napthalene		SM	mg/L	<.01	2	10/200	2.13	
xylene		SM	mg/L	<.03			2.13	
			12.0					

Reported by:

Date:

August 8, 2022

K Joychan) 8/8/2022

July 21, 2023

Kurian Joychan Industrial Pretreatment Program Manager 797 Central Avenue Wyandotte, Michigan 48192

Re: Response to Mercury Letter of Violation dated July 13, 2023 Wastewater Discharge Permit Number D-10804 Riverview Land Preserve, Riverview Michigan Project Number 209-4231588.008

On behalf of the City of Riverview and the Riverview Land Preserve (RLP), Cornerstone Environmental Group, LLC, a wholly owned subsidiary of Tetra Tech (Tetra Tech), is providing this correspondence in response to the Letter of Violation (LOV) dated July 13, 2023 issued by the Downriver Utility Wastewater Authority (DUWA). The LOV addresses a reported Mercury exceedance at discharge point 003B during the second quarter of 2023.

The permit exceedance was noted during review of laboratory data on July 11, 2023 and DUWA was notified within 24-hours via e-mail on July 12, 2023. In accordance with the Permit and the LOV, RLP resampled 003B within 7 days of the notification. The confirmation sample was collected on July 12, 2023 and those results are provided to DUWA with this response. Exceedences of mercury are very rare at the Riverview Land Preserve. We have included a table including roughly the last five years of results at 003B all have been non-detect except for the current results from Second Quarter 2023.

Table 1: Mercury Con	centrations 003B	Table 1: Mercury Conce	ntrations 003B
Date	Concentration (mg/l)	Date	Concentration (mg/l)
2/28/2019	<0.00020	5/6/2021	<0.00020
5/23/2019	<0.00020	8/12/2021	<0.00020
8/15/2019	<0.00020	11/11/2021	<0.00020
10/30/2019	<0.00020	2/24/2022	<0.00020
3/5/2020	<0.00020	5/12/2022	<0.00020
5/21/2020	<0.00020	8/25/2022	<0.00020
8/13/2020	<0.00020	11/17/2022	<0.00020
10/8/2020	<0.00020	2/27/2023	<0.00020
11/12/2020	<0.00020	5/25/2023	0.00061
2/25/2021	<0.00020	7/12/2023	<0.00020

Evaluation of Source

Mr. Kurian Joychan July 21, 2023

It is not currently known what caused the mercury detection levels in the sample collected for the Second Quarter sampling event. The results from the July 12, 2023 confirmation sample are back in compliance. Discharge location 003B is scheduled to be sampled again during early August as part of the routine third quarterly monitoring event. If mercury is again detected during this event RLP will devlop a plan to evaluate the source of the mercury and attempt to prevent future discharges. Results from the August (Third Quarter) sampling event will be provided to DUWA when they are received from the lab.

We trust that this response adequately addresses the mercury exceedance described in the DUWA Letter of Violation dated July 13, 2023. If you need any further information or have any questions regarding this response, please contact me via e-mail or by phone at 734-306-4365.

Sincerely,

CORNERSTONE ENVIRONMENTAL GROUP, LLC - A TETRA TECH COMPANY

Eric Anderson Project Manager

Jennifer Bowyer **Operations Director**

Attachment 1: 003B Mercury data for July 12, 2023 confirmation sample

cc: Kevin Sisk – City of Riverview Solid Waste Director Randall Pentiuk – City of Riverview Legal Counsel (Electronically) Mr. Kurian Joychan July 21, 2023

Attachment 1

Pace Analytical Services, LLC 4171 40th St. SE Grand Rapids, MI 49512 (616)975-4500

July 19, 2023

Kevin Sisk City of Riverview 20863 Grange Road Riverview, MI 48193

RE: Project: Riverview LP Sewer Discharge Pace Project No.: 50349307

Dear Kevin Sisk:

Enclosed are the analytical results for sample(s) received by the laboratory on July 13, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Indianapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Sittle

Brian Hall brian.hall@pacelabs.com (616)975-4500 Project Manager

Enclosures

cc: Cooper Abel, Tetra Tech Eric Anderson, Tetra Tech Jennifer Bowyer, Tetra Tech Jacqui Grimes, City of Riverview

CERTIFICATIONS

Project: Riverview LP Sewer Discharge

Pace Project No.: 50349307

Pace Analytical Services Indianapolis

7726 Moller Road, Indianapolis, IN 46268 Illinois Accreditation #: 200074 Indiana Drinking Water Laboratory #: C-49-06 Kansas/TNI Certification #: E-10177 Kentucky UST Agency Interest #: 80226 Kentucky WW Laboratory ID #: 98019 Michigan Drinking Water Laboratory #9050 Ohio VAP Certified Laboratory #: CL0065 Oklahoma Laboratory #: 9204 Texas Certification #: T104704355 Wisconsin Laboratory #: 999788130 USDA Foreign Soil Permit #: 525-23-13-23119 USDA Compliance Agreement #: IN-SL-22-001

SAMPLE SUMMARY

Project:	Riverview LP Sewer Discharge
Pace Project No .:	50349307

Lab ID	Sample ID	Matrix	Date Collected	Date Received
50349307001	003B	Water	07/12/23 08:20	07/13/23 15:51

SAMPLE ANALYTE COUNT

Project:Riverview LP Sewer DischargePace Project No.:50349307

Lab ID	Sample ID	Method	Analysts	Analytes Analysts Reported Lab		
50349307001	003B	EPA 245.1	EAE	1	PASI-I	

PASI-I = Pace Analytical Services - Indianapolis

ANALYTICAL RESULTS

Project: Pace Project No.:	Riverview LP Se 50349307	ewer Discharge							
Sample: 003B		Lab ID: 503	49307001	Collected: 07/12/2	23 08:20	Received: 0	7/13/23 15:51	Matrix: Water	
Parameters		Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
245.1 Mercury		Analytical Meth Pace Analytica		45.1 Preparation Met	hod: EP/	A 245.1			
Mercury		<0.00020	mg/L	0.00020	1	07/18/23 11:58	07/18/23 16:3	1 7439-97-6	

QUALITY CONTROL DATA

Project:	Riverview LP Se	ewer Discharge											
Pace Project No.:	50349307												
QC Batch:	n: 744072			Analysis Method:			EPA 245.1						
QC Batch Method: EPA 245.1			Analysis Description:			245.1 Mercury							
			Labo	Laboratory:		Pace Analytical Services - Indianapolis							
Associated Lab Sam	ples: 503493	07001											
METHOD BLANK:	3411708			Matrix: W	/ater								
Associated Lab Sam	ples: 503493	07001											
			Blai	nk	Reporting								
Param	neter	Units	Res	ult	Limit	Analy	yzed	Qualifier	S				
Mercury		mg/L	<0	.00020	0.0002	07/18/23 16:19							
LABORATORY CON	ITROL SAMPLE	: 3411709											
			Spike	LC	CS	LCS	% R	ec					
Param	neter	Units	Conc.	Re	sult	% Rec	Lim	its (Qualifiers				
Mercury		mg/L	0.00)5	0.0050	9	9	85-115		_			
MATRIX SPIKE SAM	/IPLE:	3411710											
			50348	857001	Spike	MS		MS	% Rec	;			
Param	neter	Units	Re	sult	Conc.	Result	9	6 Rec	Limits		Qualif	iers	
Mercury		mg/L		ND	0.005	0.0	0047	95	70	-130			
MATRIX SPIKE & M	ATRIX SPIKE D	UPLICATE: 3411	1711		3411712	2							
			MS	MSD									
		50348607005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max		
Parameter	Ur	nits Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual	
Mercury		g/L ND	0.005	0.005	0.0049	0.0048	98	96	70-130	2	20		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Riverview LP Sewer Discharge

Pace Project No.: 50349307

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	Riverview LP Sewer Discharge
Pace Project No.:	50349307

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
50349307001	003B	EPA 245.1	744072	EPA 245.1	744159

REPORT OF LABORATORY ANALYSIS

	e: of	2202500		GROUND WATER	L					(N/A) (enitold) (Subise) 1 1	Tace Project No./ Lab I.D.					SAMPLE CONDITIONS		i on y Jact	Temp in Received Custod Custod Costed CV/N) (Y/N) (Y/N)
	Page:		REGULATORY AGENCY	NPDES F GROU	UST CRA	Site Location	STATE:	Requested Analysis Filtered (Y/N)									DATE TIME	1181531551		< 8/ 8/12
CHAIN-OF-CU? WO# : 50349307 The Chain-of-Custody is a III III III III III III III III III	Section B Required Project Information: 50349307	Scule Produces Marison	Copy To:	CATE. Anderschin @ Ich in the b. and Address.	ar No.:		and the second second second second	Requested Ar	to left)	iater DW COLLECTION COLLECTION START ENDIGRAB COMPOSITE START ENDIGRAB COMPOSITE COMPOSITE COMPOSITE COMPOSITE COMPOSITE COMPOSITE COMPOSITE COMPOSITE COMPOSITE START COMPOSITE	중 뜻 없 은 MATRIX CODE						RELINQUISHED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION	DEN Race Wister 1551 D. M. Pacing		PRINT Name of SAMPLER: EALE ANDENO SIGNATURE of SAMPLER: EALE OF (MMIDDINN):
Pace Analytical *	Section A Required Client Information:	Company: RIVERULEN Land R.	Address Srande Rd	KIVENUCU MT.	0:	Phone: Fax:	Requested Due Date/TAT:		Section D Required Client Information	Nater Ware Waster Ware Ware Ware Ware Ware Ware Product Soil/Solid	QUE	1 003B	Ω 2	99	9 10	12	ADDITIONAL COMMENTS		Page	9 of 11

Sample Conditions Upon Receipt Form (SCUR)

Date/Time: 7/12/53	Evaluated By: 5,	<u> </u>)#:50	349307	7
Client: RIVERVIEL.)	PM: 3TH		BJH ENT: GR-Ri∨	Due Date: (erview	07/28/23
Lab Notified of Rush or Short Holds:	YES NO				
Project Received Via: FedEx UPS	Client Page C	ourier Oth	ier:		Comments:
Custody Seal Present and Intact:	¥	YES	NO	NA	
Received Sample Information Form (SIF)	Drinking Waters Only	YES	NO	AU	
Short Hold Present (≤ 48 Hours):		YES	NO		
Sample Received in Hold:		YES	NO		
Custody Signature Present:		YES	NO		
Collector Signature Present:		V IES	NO		
Sample Collected Today and On Ice:		YES	NO	N/A	
IR Gun #: 350 _351		Temp.	should be 0°	°C - 6°C (Initial	/Corrected)
Ice Type: WET Bagged / WET Loose) BLUE NONE	1. Cooler Te	emp. Upon Re	eceipt: 2.5	12.7 °C
Ice Location: TOP BOTTOM MID		2. Cooler Te	emp. Upon R	eceipt:	°C
Temp Blank Received:		YES	NO		
Sample Label Matches COC (ID/Date/Time)	:	YES	NO		
Container Intact:		YES	NO		
Correct Container:	· 3	YES	NO		
Sufficient Volume:		YES	NO		
Sample pH Acceptable: All containers needin to be in compliance with EPA recommendation pH Strip Lot # : <i>Exceptions are VOA, coliform, LLHg, O&G/TPH, septum cap or preserved with HCI</i>		YES	NO	N/A	SEFNAL
Residual Chlorine Absent: Cl ₂ Strip Lo Applies to SVOC 625, PCB/Pest. 608, Total/Ame.		YES	NO	NA	
VOA Headspace Acceptable (<6mm):		YES	NO	, N/A	
Trip Blank Received: HCI MeOH	Other:	YES	Y NO	ON HOLD	
Comments:		3. Cooler Te	emp. Upon Re	eceipt:	°C
		4. Cooler Te	emp. Upon Re	eceipt:	°C
		Non-Confo	rmance Forn	Required:	VES NO

: 203	49307		Iple Receiving	siving Non-Conformance Form (NCF)	nance Forr	n (NCF)		
A CLIENT: GR-Riverview	Due Date: 07/28/23 rvieu	-	COC Integrif eck issues below where appr	COC Integrity Issues: Check issues below and add details where appropriate	5	S ileck issues b	ample Inte elow and ad	Sample Integrity Issues: Check issues below and add details where appropriate
Date: 7/13/23			COC does I eceived (m	COC does not match samples received (missing, additional, etc.)	Custody ser	Custody seal(s) damaged or missing on coolers, samples, or trip blanks	or missing ip blanks	*Insufficient sample volume received
Evaluated by:	/		COC sample sample label	COC sample ID does not match sample label	Cooler or sam compromised	Cooler or sample container broken or compromised	er broken or	*Sample contains residual chlorine
Client: AVEN	FW IP		*COC colle does not m	*COC collection date/time missing or does not match sample label	*Sample pa	*Sample past holding time	0	Improper preservation
*Drinking Water Deficiency: Samples may be invalid. Analysis must not	r Deficiency: d. Analvsis must not		*Analyses/ analytes clarification needed	*Analyses/ analytes missing or clarification needed	*Temperatu criteria (typi	*Temperature not within acceptance criteria (typically 0-6°C)	Icceptance	*Sample contains interferences (multi- phasic, solids, color, odor, etc)
proceed without client written permission.	written permission.		*Required s	*Required signatures are missing	*Sample ar	*Sample arrived frozen or partially frozen	partially	Vial(s) received with improper headspace (>6mm)
*No Sample Information Form (SIF) received with sample(s)	Form (SIF) received	*	*Residual Chlorine absence not indicat	Chlorine presence/ ot indicated on COC	*Incorrect o received	*Incorrect or improper containers received	itainers	Other: See notes below
	coc				Sample Label			Sample Notes
Sample ID	Date Time Co	Container Type	Quantity	Sample ID	Date Time	ne Container Type	er Quantity	
				2233		SPER		7H=7
						-		
General Comments/ Client Instructions:	ent Instructions:					-		
Page								
сососососососососососососососососососо								

APPENDIX B: OPINION OF PROBABLE COSTS

RLP LTP SRF Project Plan Present Worth Back-up Calculations

The present worth calculations were performed using a discount factor of 0.3 percent over a 20 year period, which is the requested term of the SRF loan.

The salvage values were calculated by evaluating each line of the opinions of probable cost and classifying the item as one of the following:

- Civil/Site Work/Piping site improvements, grading and piping
- Structures includes new buildings and concrete flooring
- Mechanical includes process equipment; pumps; and heating, and ventilation
- Electrical/Other includes electrical equipment, instrumentation, and other items that do not fit into another category
- Engineering costs associated with the design and construction
- Contingencies additional costs to account for unknown factors prior to final design

The costs for each category were added for each process area. The service life assigned to each category is summarized in Table B-1.

Category	Service Life
Civil/Site Work/Piping	40
Structures	40
Mechanical	20
Electrical/Other	20
Engineering	20
Contingencies	20

Table B-1. Service Life by Category

The cost assignments are included with the opinions of probable costs, included herein (Appendix B).

No assets were assigned a salvage value. The life span of landfill and service life of the equipment will correspond.

The O&M costs predominantly consist of energy usage. The assumptions used to develop the O&M costs for Alternatives A, B and C can be found in the tables that are included in this appendix (Appendix B).

 39395 W 12 Mile Road, Suite 103, Farmington Hills, MI 48331

 PROJECT:
 RLP SRF Project Plan

 LOCATION:
 Riverview, Michigan

 BASIS FOR ESTIMATE:
 [X] CONCEPTUAL
 [] PRELIMINARY
 [] FINAL

 WORK: Alternative A - GAC and FF
 Leachate Treatment Plant
 []

Telephone: (877) 633-5520 DATE: 3/18/24 PROJECT NO. 4231588 ESTIMATOR: NRS CHECKED BY: AK

Design Summary Alternative A

Construction and Equipment Costs Summary

	Total Project Costs	Service Life	Present Worth of Capital Investments	Salvage Value at End of Planning Period	Net Present Worth (Cost)
Civil/Site Work/Piping	\$632,588	40	\$632,588	\$0	\$632,588
Structures	\$889,400	40	\$889,400	\$0	\$889,400
Mechanical	\$4,973,475	20	\$4,973,475	\$0	\$4,973,475
Electrical/Other	\$277,880	20	\$277,880	\$0	\$277,880
Engineering	\$880,534	20	\$880,534	\$0	\$880,534
Contingencies	\$1,148,081	20	\$1,148,081	\$0	\$1,148,081
Total Capital Cost	\$8,801,958	•	-	Total	\$8,801,958

Туре	Annual Cost	Net Present Worth of O&
O&M	\$1,638,800	\$31,743,557
T . (.)		
Total		\$31,743,557
Net Prese	nt Worth	\$40,545,515
Weighted	Useful Life (years)	23.46

Assumptions:	
Present Worth Factor Salvage Value	
Present Worth Factor O&M	19.37
Discount Rate (%)	0.3
Planning Period (years)	20

Weighted Useful Life = ((Item Cost A * Service Life A)+(Item Cost B * Service Life B) + (etc.)) / (Total Capital Cost)

39395 W 12 Mile Road,	Suite 103, Farmington Hills, MI 48331		Telephone: (877) 633-5520
PROJECT:	RLP SRF Project Plan		DATE: 3/18/24
LOCATION:	Riverview, Michigan		PROJECT NO. 4231588
BASIS FOR ESTIMATE	: [X] CONCEPTUAL [] PRELIMINARY	[] FINAL	ESTIMATOR: NRS
WORK: Alternative B -	GAC and FF		CHECKED BY: AK
	Leachate Treatment Plant		

Design Summary

Alternative B

ITEM DESCRIPTION QUANT. UNIT UNIT TOTAL Civil/Site Structure Mechanica NO. AMOUNT AMOUNT Work/Piping \$200,000 General Conditions \$100,000.00 2 \$200.000 1 IS Mobilization/Demobilization \$75,000.00 \$150,000 \$150,000 2 2 LS Existing Equipment Removals, Demolition 3 2 \$50,000.00 \$100,000 \$100,000 LS 4 Deliver and install SAFF Unit 2 \$20,000.00 \$40,000 \$40,000 IS Deliver and install Oil/Water Separator \$5,000.00 \$10,000 \$10,000 5 2 IS. \$25,000.00 Deliver and install Lamella Clarifier \$50,000 \$50,000 2 6 S Install 4-inch SCH 80 PVC Piping, Hangers, and assoc. 800 \$50.00 \$40,000 \$40,000 7 F Equipment \$15,000.00 \$30,000 \$30,000 Program Process Automation and Controls 2 8 IS \$5,000.00 \$10,000 \$10,000 Pressure and Hydraulic Testing 2 9 LS 10 Leachate Disposal During Construction 1,680,00 \$0.13 \$215,880 GAL 11 Process Optimization and Training by EPOC Enviro 50 \$1,000.00 \$50,000 HR 12 New EQ Tank \$500,000.00 \$500,000 \$500,000 1 ΕA New LTP Building \$389,400.00 \$389,400 \$389,400 13 ΕA Other Mis Costs for New Building Construction \$500,000.00 \$500,000 \$500,000 14 1 EΑ 15 SAFF40 Unit \$1,800,000.00 \$3.600.000 \$3,600,000 2 Unit 16 Oil water separator 2 \$35,600.00 \$71,200 \$71,200 Unit 17 Lamella Clarifier 2 \$128,400.00 \$256,800 \$256,800 IS \$8,045 18 Flocculant and Coagulant Mixers 2 S \$4,022.28 \$8,045 Bulk Chemical Storage Tank \$7,715.22 \$15,430 \$15,430 19 2 LS \$50.00 \$2,000 Sampling ports 40 \$2,000 20 Unit 21 GAC System \$380,000.00 \$380,000 \$380,000 1 LS 22 Concrete Pad 2000 \$18.90 \$37,800 \$37,800 SF 23 SAFF Unit Supports 12 \$399.00 \$4,788 \$4,788 EΑ \$50,000.00 \$100,000 \$100,000 24 Leachate Transfer Pump Stations 2 ΕA 25 26 27 28 29 30 31 32 33 Electrical \$12,000 \$1,148,081 34 Contingency 15 % \$880,534 35 Engineering 13 % TOTAL CONSTRUCTION COST \$632,588 \$889,400 \$8,801,958 Total \$4,973,47

cal	Other	Engineering	Contingencies
	\$215,880		
	\$50,000		
)			
0			
)			
)			
	\$12,000		
	÷ -,000		\$1,148,081
		\$880,534	. , -,
75	\$277,880	\$880,534	\$1,148,081
			,

 39395 W 12 Mile Road, Suite 103, Farmington Hills, MI 48331

 PROJECT:
 RLP SRF Project Plan

 LOCATION:
 Riverview, Michigan

 BASIS FOR ESTIMATE:
 [X] CONCEPTUAL
 [] PRELIMINARY
 [] FINAL

 WORK: Alternative B - GAC and IX
 Leachate Treatment Plant
 []

Telephone: (877) 633-5520 DATE: 3/18/24 PROJECT NO. 4231588 ESTIMATOR: NRS CHECKED BY: AK

Design Summary

Alternative B

Construction and Equipment Costs Summary

	Total Project Costs	Service Life	Present Worth of Capital Investments	Salvage Value at End of Planning Period	Net Present Worth (Cost)
Civil/Site Work/Piping	\$738,000	40	\$738,000	\$0	\$738,000
Structures	\$889,400	40	\$889,400	\$0	\$889,400
Mechanical	\$1,941,461	20	\$1,941,461	\$0	\$1,941,461
Electrical/Other	\$515,760	20	\$515,760	\$0	\$515,760
Engineering	\$531,001	20	\$531,001	\$0	\$531,001
Contingencies	\$692,343	20	\$692,343	\$0	\$692,343
Total Capital Cost \$	\$5,307,965	-		Total	\$5,307,965

Туре	Annual Cost	Net Present Worth of O&M		
O&M	\$1,791,205	\$34,695,654		
Total		¢24 605 654		
TULAI		\$34,695,654		
Net Present V	/orth	\$40,003,619		
	ful Life (years)	26.13		

Assumptions:

Present Worth Factor Salvage Value	
Present Worth Factor O&M	19.37
Discount Rate (%)	0.3
Planning Period (years)	20

Weighted Useful Life = ((Item Cost A * Service Life A)+(Item Cost B * Service Life B) + (etc.)) / (Total Capital Cost)

	-			-
39395 W 12 Mile Roa	d, Suite 103, Farmingto	n Hills, MI 48331		Telephone: (877) 633-5520
PROJECT:	RLP SRF Project	Plan		DATE: 3/18/24
LOCATION:	Riverview, Michig	jan		PROJECT NO. 4231588
BASIS FOR ESTIMAT	E: [X] CONCEPTUAL	[] PRELIMINARY	[] FINAL	ESTIMATOR: NRS
WORK: Alternative B	- GAC and IX			CHECKED BY: AK
	Leachate Treatme	ent Plant		

Design Summary Alternative B

ITEM NO.	DESCRIPTION	QUANT.	UNIT	UNIT AMOUNT	TOTAL AMOUNT		Civil/Site Work/Piping	Structure	Mechanical	Other	Engineering	Contingencies
1												
2	Bulk Chemical Storage Tank	2	LS	\$7,715.22	\$15,430				\$15,430			
3	Pumps, total	2	LS	\$14,993.61	\$29,987				\$29,987			
4	Flow Meters, total	2	LS	\$13,684.35	\$27,369				\$27,369			
5	Actuated and Manual Valves	2	LS	\$4,459.11	\$8,918				\$8,918			
6	Flocculant and Coagulant Mixers	2	LS	\$4,022.28	\$8,045				\$8,045			
7	Level Sensors/Transmitters	2	LS	\$2,330.99	\$4,662				\$4,662			
8	IX Vessels	2	LS	\$59,950.00	\$119,900				\$119,900			
9	Air Compressor	2	LS	\$15,455.99	\$30,912				\$30,912			
10	Hot Water Heater	2	LS	\$469.00	\$938				\$938			
11	Lamella Clarifier	2	LS	\$128,400.00	\$256,800				\$256,800			
12	Dynasand Filter	2	LS	\$100,000.00	\$200,000				\$200,000			
13	Sampling ports	70	Unit	\$50.00	\$3,500				\$3,500			
14	GAC System	1	LS	\$380,000.00	\$380,000				\$380,000			
15	General Conditions	2	LS	\$200,000.00	\$400,000		\$400,000					
16	Mobilization/Demobilization	1	LS	\$150,000.00	\$150,000		\$150,000					
17	Existing Equipment Removals, Demolition	2	LS	\$50,000.00	\$100,000		\$100,000					<u> </u>
18	Tank and Equipment Mounts	32	EA	\$1,500.00	\$48,000		\$48,000					
19	Existing Equipment Relocation and Installation	4	EA	\$5,000.00	\$20,000				\$20,000			
20	Deliver and Install DyanSand Filter	2	EA	\$30,000.00	\$60,000				\$60,000			
21	Deliver and Install Lamella Clarifier	2	EA	\$25,000.00	\$50,000				\$50,000			
22	Deliver and Install IX System	2	EA	\$15,000.00	\$30,000				\$30,000			
23	Deliver and Install Pumps		EA	\$2,500.00	\$5,000	1 1			\$5,000			ł
24	Deliver and Install Instrumentation	2	LS	\$35,000.00	\$70,000				\$70,000			
25	Install 4-inch SCH 80 PVC Piping, Hangers, and assoc. Equipment	800	FT	\$50.00	\$40,000		\$40,000					
27	Program Process Automation and Controls	2	LS	\$50,000.00	\$100,000				\$100,000			
28	Pressure and Hydraulic Testing	2	LS	\$10,000.00	\$20,000				\$20,000			
29	Leachate Disposal During Construction	3,360,000	GAL	\$0.13	\$431,760					\$431,760		
30	System Start-up and Training	80	HR	\$150.00	\$12,000					\$12,000		1
31	New EQ Tank	1	EA	\$500,000.00	\$500,000	+ +			\$500,000		1	<u>†</u>
32	New LTP Building	1	EA	\$389,400.00	\$389,400			\$389,400			1	1
33	Other Mis Costs for New Building Construction	1	FA	\$500,000.00	\$500,000			\$500,000				
34												1
35											1	1
37	Electrical				\$72,000					\$72,000	1	1
38	Contingency	15	%		\$692,343	+					1	\$692,343
39	Engineering	13	%		\$531,001						\$531,001	1
					1							
	TOTAL CONSTRUCTION COST				\$5,307,965	Total	\$738,000	\$889,400	\$1,941,461	\$515,760	\$531,001	\$692,343

 39395 W 12 Mile Road, Suite 103, Farmington Hills, MI 48331

 PROJECT:
 RLP SRF Project Plan

 LOCATION:
 Riverview, Michigan

 BASIS FOR ESTIMATE:
 [X] CONCEPTUAL
 [] PRELIMINARY

 WORK: Alternative C - RO

Γ

Leachate Treatment Plant

Design Summary

Alternative C

Construction and Equipment Costs Summary

	Total Project Costs	Service Life	Present Worth of Capital Investments	Salvage Value at End of Planning Period	Net Present Worth (Cost)
Civil/Site Work/Piping	\$1,337,500	40	\$1,337,500	\$0	\$1,337,500
Structures	\$897,963	40	\$889,400	\$0	\$897,963
Mechanical	\$6,241,300	20	\$6,241,300	\$0	\$6,241,300
Electrical/Other	\$575,760	20	\$575,760	\$0	\$575,760
Engineering	\$1,111,828	20	\$1,111,828	\$0	\$1,111,828
Contingencies	\$1,449,653	20	\$1,449,653	\$0	\$1,449,653
Total Capital Cost	\$11,614,004		-	Total	\$11,614,004

Annual Costs (O&M) Summary

Туре	Annual Cost	Net Present Worth of O&M				
O&M \$1,638,800		\$26,961,891				
Total		\$26,961,891				
Net Present Worth		\$38,575,895				
Weighted Use	ful Life (years)	23.85				

Assumptions:		
Present Worth Factor Salvage Value		
Present Worth Factor O&M	19.37	
Discount Rate (%)	0.3	
Planning Period (years)	20	

Weighted Useful Life = ((Item Cost A * Service Life A)+(Item Cost B * Service Life B) + (etc.)) / (Total Capital Cost)

Telephone: (877) 633-5520 DATE: 3/18/24 PROJECT NO. 4231588 ESTIMATOR: NRS CHECKED BY: AK

•••••••••••••••••••••••••••••••••••••••		
39395 W 12 Mile Road, Suite 10	3, Farmington Hills, MI 48331	Telephone: (877) 633-5520
PROJECT: RLP	P SRF Project Plan	DATE: 3/18/24
LOCATION: Rive	erview, Michigan	PROJECT NO. 4231588
BASIS FOR ESTIMATE: [X] CO	DNCEPTUAL [] PRELIMINARY [] FINAL	ESTIMATOR: NRS
WORK: Alternative C - RO		CHECKED BY: AK
1	hat The store of Diant	

Leachate Treatment Plant

Design Summary

Alternative C

ITEM	DESCRIPTION	QUANT.	UNIT	UNIT	TOTAL		Civil/Site	Otra f	Mark 1.1	01	En et i	Т
NO.				AMOUNT	AMOUNT		Work/Piping	Structure	Mechanical	Other	Engineering	1
1	RO Treatment System Equipment, Start-up and Training	1	LS	\$2,165,800.00	\$2,165,800				\$2,165,800			T
2	Acid Storage Tank	1	EA	\$5,000.00	\$5,000				\$5,000			
3	Influent Piping from Equilization Tanks to Treatment Plant	400	FT	\$50.00	\$20,000		\$20,000					
4	Influent Pump Station	2	EA	\$100,000.00	\$200,000		\$200,000				1	T
5	General Conditions	1	LS	\$500,000.00	\$500,000		\$500,000				1	T
6	Mobilization/Demobilization	1	LS	\$200,000.00	\$200,000		\$200,000				1	T
7	Site/Survey	1	LS	\$100,000.00	\$100,000		\$100,000				1	T
8	Soil Erosion and Sediment Control	1	LS	\$50,000.00	\$50,000		\$50,000					T
9	Demolition and Removal of Existing Equipment	4	LS	\$50,000.00	\$200,000		\$200,000				1	T
10	Tank and Equipment Mounts	10	EA	\$1,500.00	\$15,000		\$15,000					T
11	Deliver and Install RO Equipment Skids	2	EA	\$50,000.00	\$100,000				\$100,000			T
12	Deliver and Install RO Storage Tanks (Larger Tanks)	3	EA	\$20,000.00	\$60,000				\$60,000			T
13	Deliver and Install RO and Acid Storage Tanks (Smaller	3	EA	\$10,000.00	\$30,000				\$30,000			T
14	Tanks) Deliver and Install Permeate Degassifier	1	EA	\$20,000.00	\$20,000				\$20,000			t
15	Deliver and Install Pump Skids	9	EA	\$10,000.00	\$90,000				\$90,000		1	t
16	Install New Piping and Appurtenances	800	FT	\$50.00	\$40,000				\$40,000		1	t
17	Acid Feed Pumps and Appurtenances	2	EA	\$16,000.00	\$32,000				\$32,000		1	t
19	Program Process Automation and Controls	4	LS	\$50,000.00	\$200,000				\$200,000		†	t
20	Pressure and Hydraulic Testing	4	LS	\$10,000.00	\$40,000				\$40,000		+	\uparrow
21	Leachate Disposal During Construction	3,360,000	GAL	\$0.13	\$431,760					\$431,760	+	\uparrow
22	New EQ Tank	2	EA	\$500,000.00	\$1,000,000				\$1,000,000		-	1
23	New LTP Building	1	EA	\$389,400.00	\$389,400			\$389,400				t
24	Other Mis Costs for New Building Construction	1	EA	\$500,000.00	\$500,000			\$500,000				T
25	RO Treatment System Equipment, Start-up and Training	1	LS	\$2,451,000.00	\$2,451,000				\$2,451,000			T
26	Acid Storage Tank	1	EA	\$2,500.00	\$2,500				\$2,500			T
27	Existing Storage Tank for Feed (6,000 gal)	1	EA	-\$10,000.00	-\$10,000				-\$10,000			T
28	Existing Storage Tank for Permeate (5,000 gal)	1	SA	-\$10,000.00	-\$10,000				-\$10,000			T
29	Existing Storage Tank for Residual (3,000 gal)	1	EA	-\$5,000.00	-\$5,000				-\$5,000			
30	Heat Trace and Insulate Tanks Credit	6	EA	-\$40,000.00	-\$240,000				-\$240,000			T
31	Concrete Pad	1750	SF	\$18.90	\$33,075			\$33,075				
32	Overhang for Weather Protection for Equipment Outside	1750	SF	\$15.35	\$26,863			\$26,863				T
33	Less Concrete Pad	1500	SF	-\$18.90	-\$28,350			-\$28,350				Ι
34	Less Overhand	1500	SF	-\$15.35	-\$23,025			-\$23,025				Ι
35	Tank and Equipment Mounts	10	EA	\$1,500.00	\$15,000				\$15,000			Ι
36	Deliver and Install RO Equipment Skids	2	EA	\$50,000.00	\$100,000				\$100,000			T
37	Deliver and Install RO Storage Tanks (Larger Tanks)	3	EA	\$20,000.00	\$60,000				\$60,000			Ι
38	Deliver and Install RO and Acid Storage Tanks (Smaller	3	EA	\$10,000.00	\$30,000				\$30,000			T
39	Tanks) Deliver and Install Permeate Degassifier	1	EA	\$20,000.00	\$20,000				\$20,000		+	+
40	Deliver and Install Pump Skids	9	EA	\$10,000.00	\$90,000			1	\$90,000		+	+
41	Install New Piping and Appurtenances	800	FT	\$50.00	\$40,000		\$40,000				+	+
42	Heat Trace and Insulate Piping	500	FT	\$100.00	\$50,000		\$50,000				+	+
43	Heat Trace and Insulate Piping Credit	375	FT	-\$100.00	-\$37,500		-\$37,500		1		+	+
44	Existing Tank Re-Use Install	3	EA	-\$15,000.00	-\$45,000			1	-\$45,000		+	+
45					1						+	\uparrow
46			1								1	t
47	Electrical		1		\$144,000					\$144,000	1	t
48	Contingency	15	%		\$1,449,653						1	t
49	Engineering	13	%		\$1,111,828						\$1,111,828	T
·					1						1	1
	TOTAL CONSTRUCTION COST				\$11,614,004	Total	\$1,337,500	\$897,963	\$6,241,300	\$575,760	\$1,111,828	1
and the second se												_

	Contingencies
_	
	\$1,449,653
	*
	\$1,449,653

APPENDIX C: CORRESPONDENCE

RLP

BIOLOGICAL ANALYSIS

Prepared using IPaC Generated by Nicole Shanks (nicole.shanks@tetratech.com) February 28, 2024

The purpose of this document is to assess the effects of the proposed project and determine whether the project may affect any federally threatened, endangered, proposed, or candidate species. If appropriate for the project, this document may be used as a biological assessment (BA), as it is prepared in accordance with legal requirements set forth under <u>Section 7 of the Endangered Species Act (16 U.S.C. 1536 (c))</u>.

In this document, any data provided by U.S. Fish and Wildlife Service is based on data as of February 28, 2024.

Prepared using IPaC version 6.105.1-rc1

RLP BIOLOGICAL ASSESSMENT

TABLE OF CONTENTS

1 Description of the action	4
1.1 Project name	4
1.2 Executive summary	4
1.3 Effect determination summary	4
1.4 Project description	5
1.4.1 Location	5
1.4.2 Description of project habitat	5
1.4.3 Project proponent information	6
1.4.4 Project purpose	6
1.4.5 Project type and deconstruction	6
1.4.6 Anticipated environmental stressors	11
1.5 Action area	11
1.6 Conservation measures	12
1.7 Prior consultation history	12
1.8 Other agency partners and interested parties	12
1.9 Other reports and helpful information	12
2 Species effects analysis	13
2.1 Eastern Massasauga (=rattlesnake)	13
Justification for exclusion	13
2.2 Eastern Prairie Fringed Orchid	13
Justification for exclusion	13
2.3 Indiana Bat	13
Justification for exclusion	13
2.4 Monarch Butterfly	14
Justification for exclusion	14
2.5 Northern Riffleshell	14
Justification for exclusion	14
2.6 Rufa Red Knot	14
Justification for exclusion	14
2.7 Tricolored Bat	14
Justification for exclusion	14
3 Critical habitat effects analysis	15
4 Summary Discussion and Conclusion	16
4.1 Summary discussion	16
4.2 Conclusion	16

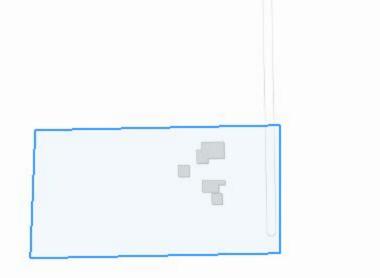
1 DESCRIPTION OF THE ACTION

1.1 PROJECT NAME

RLP

1.2 EXECUTIVE SUMMARY

Modifications to the Leachate Treatment Plant for a landfill. System will wither be modified within the building, next to or at the existing CNG Station. Area of modifications will occur on the property of the landfill which completed an approved Environmental Assessment when it was first approved.


SPECIES (COMMON NAME)	SCIENTIFIC NAME	LISTING STATUS	PRESENT IN ACTION AREA	EFFECT DETERMINATION
<u>Eastern Massasauga</u> <u>(=rattlesnake)</u>	Sistrurus catenatus	Threatened	No	NE
Eastern Prairie Fringed Orchid	Platanthera leucophaea	Threatened	No	NE
Indiana Bat	Myotis sodalis	Endangered	No	NE
Monarch Butterfly	Danaus plexippus	Candidate	Excluded from analysis	Excluded from analysis
Northern Long-eared Bat [†] . This species or critical habitat is covered by a DKey.	Myotis septentrionalis	Endangered		NE
Northern Riffleshell	Epioblasma rangiana	Endangered	No	NE
Rufa Red Knot	Calidris canutus rufa	Threatened	No	NE
Tricolored Bat	Perimyotis subflavus	Proposed Endangered	Excluded from analysis	Excluded from analysis

1.3 EFFECT DETERMINATION SUMMARY

[†] This species or critical habitat is covered by a DKey.

1.4 PROJECT DESCRIPTION

1.4.1 LOCATION

LOCATION Wayne County, Michigan

1.4.2 DESCRIPTION OF PROJECT HABITAT

Landfill and support buildings

1.4.3 PROJECT PROPONENT INFORMATION

Provide information regarding who is proposing to conduct the project, and their contact information. Please provide details on whether there is a Federal nexus.

REQUESTING AGENCY

Private Entity

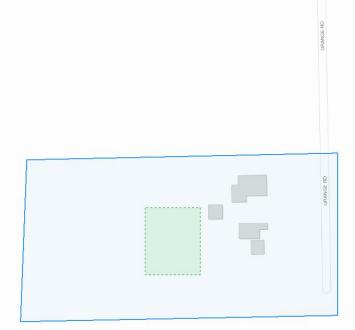
FULL NAME Nicole Shanks

STREET ADDRESS 39395 W. Twelve Mile Road

Suite 103

CITY	STATE	ZIP
Farmington Hills	MI	48331

PHONE NUMBER 9472464301 E-MAIL ADDRESS nicole.shanks@tetratech.com


1.4.4 PROJECT PURPOSE

The project includes modifications to the LTP and potential building of an additional LTP in the former area of the CNG Station.

1.4.5 PROJECT TYPE AND DECONSTRUCTION

This project is a wastewater treatment plant construction project.

1.4.5.1 PROJECT MAP

LEGEND

Project footprint

Layer 1: Construct building, geotechnical investigation, in-ground utilities construction, install specific wastewater treatment components, landscaping/ restoration, maintain access road, rough grading, wastewater treatment plant (structure)

1.4.5.2 WASTEWATER TREATMENT PLANT

STRUCTURE COMPLETION DATE

January 01, 2026

REMOVAL/DECOMMISSION DATE (IF APPLICABLE)

Not applicable

STRESSORS This activity is not expected to have any impact on the environment.

DESCRIPTION

Changes to the LTO will either occur in the building or in area covered by concrete.

1.4.5.3 CONSTRUCT BUILDING

ACTIVITY START DATE January 01, 2026

ACTIVITY END DATE

Unspecified

STRESSORS

This activity is not expected to have any impact on the environment.

DESCRIPTION

The changes to the system will either occur in the building or on existing concrete

1.4.5.4 GEOTECHNICAL INVESTIGATION

ACTIVITY START DATE January 01, 2025

ACTIVITY END DATE

Unspecified

STRESSORS

This activity is not expected to have any impact on the environment.

DESCRIPTION

Located in area with concrete that has already been disturbed

1.4.5.5 IN-GROUND UTILITIES CONSTRUCTION

ACTIVITY START DATE January 01, 2026

ACTIVITY END DATE

Unspecified

STRESSORS

This activity is not expected to have any impact on the environment.

DESCRIPTION

The changes to the system will either occur in the building or on existing concrete. Utilities already existing

1.4.5.6 INSTALL SPECIFIC WASTEWATER TREATMENT COMPONENTS

ACTIVITY START DATE January 01, 2026

ACTIVITY END DATE Unspecified

STRESSORS

This activity is not expected to have any impact on the environment.

DESCRIPTION

The changes to the system will either occur in the building or on existing concrete

1.4.5.7 LANDSCAPING/RESTORATION

ACTIVITY START DATE January 01, 2026

oundary 01, 2020

ACTIVITY END DATE

Unspecified

STRESSORS

This activity is not expected to have any impact on the environment.

DESCRIPTION

The changes to the system will either occur in the building or on existing concrete. May involve minor landscaping

1.4.5.8 MAINTAIN ACCESS ROAD

ACTIVITY START DATE January 01, 2025

ACTIVITY END DATE Unspecified

STRESSORS

This activity is not expected to have any impact on the environment.

DESCRIPTION

Access road already existing

1.4.5.9 ROUGH GRADING

ACTIVITY START DATE January 01, 2025

ACTIVITY END DATE Unspecified

STRESSORS

This activity is not expected to have any impact on the environment.

DESCRIPTION

The changes to the system will either occur in the building or on existing concrete

1.4.6 ANTICIPATED ENVIRONMENTAL STRESSORS

Describe the anticipated effects of your proposed project on the aspects of the land, air and water that will occur due to the activities above. These should be based on the activity deconstructions done in the previous section and will be used to inform the action area.

<section-header>

LEGEND

Project footprint

Stressor location

1.6 CONSERVATION MEASURES

Describe any proposed measures being implemented as part of the project that are designed to reduce the impacts to the environment and their resulting effects to listed species. To avoid extra verbiage, don't list measures that have no relevance to the species being analyzed.

No conservation measures have been selected for this project.

1.7 PRIOR CONSULTATION HISTORY

No recent History

1.8 OTHER AGENCY PARTNERS AND INTERESTED PARTIES

State Agency - Michigan

1.9 OTHER REPORTS AND HELPFUL INFORMATION NA

2 SPECIES EFFECTS ANALYSIS

This section describes, species by species, the effects of the proposed action on listed, proposed, and candidate species, and the habitat on which they depend. In this document, effects are broken down as direct interactions (something happening directly to the species) or indirect interactions (something happening to the environment on which a species depends that could then result in effects to the species).

These interactions encompass effects that occur both during project construction and those which could be ongoing after the project is finished. All effects, however, should be considered, including effects from direct and indirect interactions and cumulative effects.

2.1 EASTERN MASSASAUGA (=RATTLESNAKE)

This species has been excluded from analysis in this environmental review document.

JUSTIFICATION FOR EXCLUSION

Concrete around the building and in the area of CNG Station

2.2 EASTERN PRAIRIE FRINGED ORCHID

This species has been excluded from analysis in this environmental review document.

JUSTIFICATION FOR EXCLUSION

Concrete around the LTP and CNG Station

2.3 INDIANA BAT

This species has been excluded from analysis in this environmental review document.

JUSTIFICATION FOR EXCLUSION

Concrete around the LTP and CNG Station. No trees will be removed

2.4 MONARCH BUTTERFLY

This species has been excluded from analysis in this environmental review document.

JUSTIFICATION FOR EXCLUSION

Concrete around the LTP and CNG Station

2.5 NORTHERN RIFFLESHELL

This species has been excluded from analysis in this environmental review document.

JUSTIFICATION FOR EXCLUSION

Concrete around the LTP and CNG Station

2.6 RUFA RED KNOT

This species has been excluded from analysis in this environmental review document.

JUSTIFICATION FOR EXCLUSION

Concrete around the LTP and CNG Station. No trees will be removed

2.7 TRICOLORED BAT

This species has been excluded from analysis in this environmental review document.

JUSTIFICATION FOR EXCLUSION

Concrete around the LTP and CNG Station. No trees will be removed

3 CRITICAL HABITAT EFFECTS ANALYSIS

No critical habitats intersect with the project action area.

4 SUMMARY DISCUSSION AND CONCLUSION

4.1 SUMMARY DISCUSSION

The area of concern includes a Leachate Treatment PLant and concrete from either the LTP or CNG Station. No addition area will be disturbed.

4.2 CONCLUSION

No addition area will be disturbed beyond the existing buildings or surrounding concrete pads

United States Department of the Interior

FISH AND WILDLIFE SERVICE Michigan Ecological Services Field Office 2651 Coolidge Road Suite 101 East Lansing, MI 48823-6360 Phone: (517) 351-2555 Fax: (517) 351-1443

In Reply Refer To: Project Code: 2024-0055420 Project Name: RLP

February 28, 2024

Subject: List of threatened and endangered species that may occur in your proposed project location or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed, and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through IPaC by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological

evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at: https://www.fws.gov/sites/default/files/documents/endangered-species-consultation-handbook.pdf

Migratory Birds: In addition to responsibilities to protect threatened and endangered species under the Endangered Species Act (ESA), there are additional responsibilities under the Migratory Bird Treaty Act (MBTA) and the Bald and Golden Eagle Protection Act (BGEPA) to protect native birds from project-related impacts. Any activity, intentional or unintentional, resulting in take of migratory birds, including eagles, is prohibited unless otherwise permitted by the U.S. Fish and Wildlife Service (50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)). For more information regarding these Acts, see <u>Migratory Bird Permit | What We Do | U.S. Fish & Wildlife</u> <u>Service (fws.gov)</u>.

The MBTA has no provision for allowing take of migratory birds that may be unintentionally killed or injured by otherwise lawful activities. It is the responsibility of the project proponent to comply with these Acts by identifying potential impacts to migratory birds and eagles within applicable NEPA documents (when there is a federal nexus) or a Bird/Eagle Conservation Plan (when there is no federal nexus). Proponents should implement conservation measures to avoid or minimize the production of project-related stressors or minimize the exposure of birds and their resources to the project-related stressors. For more information on avian stressors and recommended conservation measures, see https://www.fws.gov/library/collections/threats-birds.

In addition to MBTA and BGEPA, Executive Order 13186: *Responsibilities of Federal Agencies to Protect Migratory Birds*, obligates all Federal agencies that engage in or authorize activities that might affect migratory birds, to minimize those effects and encourage conservation measures that will improve bird populations. Executive Order 13186 provides for the protection of both migratory birds and migratory bird habitat. For information regarding the implementation of Executive Order 13186, please visit <u>https://www.fws.gov/partner/council-conservation-migratory-birds</u>.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Code in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

OFFICIAL SPECIES LIST

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

Michigan Ecological Services Field Office

2651 Coolidge Road Suite 101 East Lansing, MI 48823-6360 (517) 351-2555

PROJECT SUMMARY

Project Code:2024-0055420Project Name:RLPProject Type:Wastewater Facility - Maintenance / ModificationProject Description:LTPProject Location:Kastewater Facility - Maintenance / Modification

The approximate location of the project can be viewed in Google Maps: <u>https://www.google.com/maps/@42.165852799999996,-83.21337774610791,14z</u>

Counties: Wayne County, Michigan

ENDANGERED SPECIES ACT SPECIES

There is a total of 8 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species. Note that 2 of these species should be considered only under certain conditions.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

MAMMALS

NAME	STATUS
Indiana Bat <i>Myotis sodalis</i> There is final critical habitat for this species. Your location does not overlap the critical habitat. Species profile: <u>https://ecos.fws.gov/ecp/species/5949</u> General project design guidelines: <u>https://ipac.ecosphere.fws.gov/project/B4TAFPIMKBCTJKY2A3UIDCAL3Q/documents/</u> <u>generated/6982.pdf</u>	Endangered
Northern Long-eared Bat <i>Myotis septentrionalis</i> No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/9045</u>	Endangered
Tricolored Bat <i>Perimyotis subflavus</i> No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/10515</u>	Proposed Endangered
BIRDS	
NAME	STATUS
 Rufa Red Knot <i>Calidris canutus rufa</i> There is proposed critical habitat for this species. This species only needs to be considered under the following conditions: Only actions that occur along coastal areas during the Red Knot migratory window of MAY 1 - SEPTEMBER 30. Species profile: https://ecos.fws.gov/ecp/species/1864	Threatened

Species profile: <u>https://ecos.fws.gov/ecp/species/1864</u>

REPTILES

NAME	STATUS
Eastern Massasauga (=rattlesnake) Sistrurus catenatus	Threatened
No critical habitat has been designated for this species.	
This species only needs to be considered under the following conditions:	
 For all Projects: Project is within EMR Range 	
Species profile: <u>https://ecos.fws.gov/ecp/species/2202</u>	
General project design guidelines:	
https://ipac.ecosphere.fws.gov/project/B4TAFPIMKBCTJKY2A3UIDCAL3Q/documents/	
generated/5280.pdf	

CLAMS

NAME	STATUS
Northern Riffleshell <i>Epioblasma rangiana</i> No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/527</u>	Endangered
INSECTS NAME	STATUS
Monarch Butterfly <i>Danaus plexippus</i> No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/9743</u>	Candidate
FLOWERING PLANTS NAME	STATUS
Eastern Prairie Fringed Orchid Platanthera leucophaea	Threatened

CRITICAL HABITATS

No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/601</u>

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

YOU ARE STILL REQUIRED TO DETERMINE IF YOUR PROJECT(S) MAY HAVE EFFECTS ON ALL ABOVE LISTED SPECIES.

IPAC USER CONTACT INFORMATION

Agency:	Private Entity
Name:	Nicole Shanks
Address:	39395 W. Twelve Mile Road
Address Line 2:	Suite 103
City:	Farmington Hills
State:	MI
Zip:	48331
Email	nicole.shanks@tetratech.com
Phone:	9472464301

Michigan Natural Features Inventory MSU Extension

County Element Data

The lists include all elements (species and natural communities) for which locations have been recorded in MNFI's database for each county. Information from the database cannot provide a definitive statement on the presence, absence, or condition of the natural features in any given locality, since much of the state has not been specifically or thoroughly surveyed for their occurrence and the conditions at previously surveyed sites are constantly changing. The County Elements Lists should be used as a reference of which natural features currently or historically were recorded in the county and should be considered when developing land use plans.

Choose a county Wayne 🗸

Wayne County

Code Definitions

Last

Species

Scientific Name	Common Name	Federal Status	State Status	Global Rank	State Rank	Occurrences in County	Observed in County
Acipenser fulvescens	Lake sturgeon		.T.	<u>G3G4</u>	<u>S2</u>	8	2016
Adlumia fungosa	Climbing fumitory		.Т.	<u>G4</u>	<u>S3</u>	1	1929
Alasmidonta marginata	Elktoe		<u>SC</u>	<u>G4</u>	<u>S3?</u>	9	2020
Alasmidonta viridis	Slippershell		.T.	<u>G4G5</u>	<u>S2S3</u>	9	1933
Ambystoma texanum	Small-mouthed salamander		Æ	<u>G5</u>	<u>\$1</u>	1	2001
Ammocrypta pellucida	Eastern sand darter		.Т.	<u>G4</u>	<u>S1S2</u>	1	1936
Ammodramus savannarum	Grasshopper sparrow		<u>SC</u>	<u>G5</u>	<u>.S4</u>	6	2008
Angelica venenosa	Hairy angelica		<u>SC</u>	<u>G5</u>	<u>S3</u>	5	2018
Aristida longespica	Three-awned grass		<u>SC</u>	<u>G5</u>	<u>S2</u>	10	2019
Asclepias hirtella	Tall green milkweed		.T.	<u>G5</u>	<u>S2</u>	1	1991
Asclepias purpurascens	Purple milkweed		.T.	<u>G4G5</u>	<u>S2</u>	1	2015
Asclepias sullivantii	Sullivant's milkweed		.T.	<u>G5</u>	<u>S2</u>	4	2018
Astragalus neglectus	Cooper's milk vetch		<u>SC</u>	<u>G4</u>	<u>S3</u>	1	2022
Battus philenor	Pipevine swallowtail		<u>SC</u>	<u>G5</u>	<u>S2S3</u>	1	2015
Betula populifolia	Gray birch		<u>SC</u>	<u>G5</u>	<u>S3</u>	2	2001
Boechera missouriensis	Missouri rock-cress		.T.	<u>G5</u>	<u>S2</u>	1	1990
Bombus affinis	Rusty-patched bumble bee	LE.	E.	<u>G2</u>	<u>SH</u>	1	1914
Bombus borealis	Northern amber bumble bee		<u>SC</u>	<u>G4G5</u>	<u>S3</u>	1	1921

Scientific Name	Common Name	Federal Status	State Status	Global Rank	State Rank	Occurrences in County	Last Observed in County
Bombus fervidus	Yellow bumble bee		<u>SC</u>	<u>G3G4</u>	<u>S3</u>	1	2020
Bombus pensylvanicus	American bumble bee		Ë	<u>G3G4</u>	<u>S1</u>	2	2021
Bombus terricola	Yellow banded bumble bee		SC	<u>G3G4</u>	<u>S2S3</u>	1	1974
Buteo lineatus	Red-shouldered hawk		<u>SC</u>	<u>G5</u>	<u>\$4</u>	1	2006
Calephelis muticum	Swamp metalmark		E	<u>G3</u>	<u>S1</u>	1	1930
Camassia scilloides	Wild hyacinth		.T.	<u>G5</u>	<u>\$2</u>	2	1918
Cambarunio iris	Rainbow		<u>SC</u>	GNR	<u>S3</u>	12	2019
Carex trichocarpa	Hairy-fruited sedge		<u>SC</u>	<u>G4</u>	<u>S2</u>	1	2015
Castanea dentata	American chestnut		Æ	<u>G3</u>	<u>S1S2</u>	1	1994
Centronyx henslowii	Henslow's sparrow		Ë	<u>G4</u>	<u>S3</u>	4	2007
Cerastium velutinum	Field Chickweed		Х	G5T4?	SX	3	1913
Chenopodium standleyanum	Woodland goosefoot		<u>SC</u>	<u>G5</u>	SNR	2	1950
Cincinnatia cincinnatiensis	Campeloma spire snail		<u>SC</u>	<u>G5</u>	<u>S3</u>	3	Historical
Cistothorus palustris	Marsh wren		<u>SC</u>	<u>G5</u>	<u>S3</u>	4	2013
Clemmys guttata	Spotted turtle		.T.	<u>G5</u>	<u>\$2</u>	2	1997
Clinostomus elongatus	Redside dace		Æ	<u>G3G4</u>	<u>\$2</u>	1	2012
Corispermum pallasii	Pallas' bugseed		<u>SC</u>	<u>G4?</u>	SNR	1	1930
Cryptotis parva	Least shrew		.T.	<u>G5</u>	<u>S1S2</u>	1	1932
Cyclonaias tuberculata	Purple wartyback		.T.	<u>G5</u>	<u>\$2</u>	26	2021
Dasistoma macrophylla	Mullein-foxglove		.T.	<u>G4</u>	<u>S1</u>	1	2009
Eleocharis engelmannii	Engelmann's spike rush		<u>SC</u>	<u>G4G5</u>	<u>S2S3</u>	1	1994
Emydoidea blandingii	Blanding's turtle		<u>SC</u>	<u>G4</u>	<u>S2S3</u>	6	2021
Endodeca serpentaria	Virginia snakeroot		.T.	<u>G4</u>	<u>S2</u>	2	2003
Epioblasma perobliqua	White catspaw	LЕ.	E	<u>G1</u>	SH	1	1930
Epioblasma rangiana	Northern riffleshell	L.E.	Æ	<u>G1</u>	<u>S1</u>	21	2021
Epioblasma triquetra	Snuffbox	LЕ.	Æ	<u>G2G3</u>	<u>S1S2</u>	7	2019
Euonymus atropurpureus	Wahoo		<u>SC</u>	<u>G5</u>	<u>S3</u>	4	2004
Euphorbia commutata	Tinted spurge		.T.	<u>G5</u>	<u>S1</u>	1	1889
Euphyes dukesi	Dukes' skipper		.T.	<u>G3G4</u>	<u>S2</u>	4	2013
Falco peregrinus	Peregrine falcon		.T.	<u>G4</u>	<u>S3</u>	5	2020
Faxonius immunis	Calico crayfish		SC	<u>G5</u>	<u>S4</u>	1	1968

Scientific Name	Common Name	Federal Status	State Status	Global Rank	State Rank	Occurrences in County	Last Observec in County
Fixsenia favonius ontario	Northern hairstreak		<u>SC</u>	G5T4	<u>S1</u>	1	2008
Flexamia reflexa	Leafhopper		.Т.	GNR	<u>\$1</u>	1	2023
Fraxinus profunda	Pumpkin ash		.T.	<u>G4</u>	<u>S2</u>	1	2001
Galearis spectabilis	Showy orchis		.T.	<u>G5</u>	<u>S2</u>	6	1933
Gallinula galeata	Common gallinule		.T.	<u>G5</u>	<u>S3</u>	1	2007
Gentianella quinquefolia	Stiff gentian		.T.	<u>G5</u>	<u>\$2</u>	2	1991
Geum virginianum	Pale avens		.T.	<u>G5</u>	<u>S1S2</u>	1	1895
Haliaeetus leucocephalus	Bald eagle		<u>SC</u>	<u>G5</u>	<u>.\$4</u>	16	2021
Hiodon tergisus	Mooneye		Ë	<u>G5</u>	<u>S1</u>	1	2012
Hybanthus concolor	Green violet		SC	<u>G5</u>	<u>S</u> 3	1	1921
Hybopsis amblops	Bigeye chub		Х	<u>G5</u>	<u>SH</u>	1	1936
Hydrastis canadensis	Goldenseal		.T.	<u>G3G4</u>	<u>S2</u>	5	2005
Hypericum gentianoides	Gentian-leaved St. John's-wort		SC	<u>G5</u>	<u>S3</u>	4	2018
Ixobrychus exilis	Least bittern		.T.	<u>G4G5</u>	<u>\$3</u>	2	2007
Jeffersonia diphylla	Twinleaf		<u>SC</u>	<u>G5</u>	<u>S3</u>	2	1933
Juncus anthelatus	Large path rush		<u>SC</u>	GNR	SNR	3	2009
Juncus brachycarpus	Short-fruited rush		.T.	<u>G4G5</u>	<u>S1S2</u>	9	2015
Juncus vaseyi	Vasey's rush		.T.	<u>G5</u>	<u>S1S2</u>	1	1991
Justicia americana	Water willow		.T.	<u>G5</u>	<u>S2</u>	4	2002
Lactuca floridana	Woodland lettuce		.Т.	<u>G5</u>	<u>\$2</u>	3	2011
Lampsilis fasciola	Wavyrayed lampmussel		.T.	<u>G5</u>	<u>S2</u>	9	2019
Lasmigona compressa	Creek heelsplitter		<u>SC</u>	<u>G5</u>	<u>S3</u>	5	2017
Lasmigona costata	Flutedshell		<u>SC</u>	<u>G5</u>	SNR	15	2020
Lepisosteus oculatus	Spotted gar		<u>SC</u>	<u>G5</u>	<u>S2S3</u>	1	2007
Leucospora multifida	Conobea		SC	<u>G5</u>	SNR	4	2014
Liatris squarrosa	Plains blazing star		Х	<u>G5</u>	<u>SX</u>	1	1904
Ligumia recta	Black sandshell		.T.	<u>G4G5</u>	<u>S1?</u>	22	2019
Limotettix elegans	Elegant spikerush leafhopper		SC	GNR	SNR	1	1994
Lithobates palustris	Pickerel frog		SC	<u>G5</u>	<u>S3S4</u>	2	2005
Lycopodiella subappressa	Northern appressed clubmoss		SC	<u>G2</u>	<u>S2</u>	1	1991

Scientific Name	Common Name	Federal Status	State Status	Global Rank	State Rank	Occurrences in County	Last Observed in County
Lycopus virginicus	Virginia water- horehound		<u>SC</u>	<u>G5</u>	<u>S2</u>	1	2003
Lysimachia hybrida	Swamp candles		Х	<u>G5</u>	SX	1	1927
Macrhybopsis storeriana	Silver chub		.Т.	<u>G5</u>	<u>S1</u>	3	1985
Meropleon ambifusca	Newman's brocade		<u>SC</u>	<u>G4G5</u>	<u>\$2\$3</u>	1	2012
Mesomphix cupreus	Copper button		<u>SC</u>	<u>G5</u>	<u>S1</u>	1	Historical
Mimulus alatus	Winged monkey flower		.T.	<u>G5</u>	<u>S1</u>	1	1916
Morus rubra	Red mulberry		.T.	<u>G5</u>	<u>S2</u>	4	2006
Moxostoma carinatum	River redhorse		.T.	<u>G4</u>	<u>S2</u>	1	1984
Moxostoma duquesnei	Black redhorse		SC	<u>G5</u>	<u>S2</u>	1	2017
Myotis lucifugus	Little brown bat		.T.	<u>G3G4</u>	<u>S1</u>	1	1928
Myotis sodalis	Indiana bat	LE	Æ	<u>G2</u>	<u>S1</u>	1	1865
Necturus maculosus	Mudpuppy		SC	<u>G5</u>	<u>S3S4</u>	2	2021
Nelumbo lutea	American lotus		<u>SC</u>	<u>G4</u>	<u>S2</u>	5	2023
Neonympha mitchellii mitchellii	Mitchell's satyr	LE	E	G2T2	<u>S1</u>	1	1931
Notropis anogenus	Pugnose shiner		Ë	<u>G3</u>	<u>\$1\$2</u>	2	1894
Noturus miurus	Brindled madtom		.T.	<u>G5</u>	<u>\$2</u>	2	2004
Noturus stigmosus	Northern madtom		Ë	<u>G3</u>	<u>S1</u>	3	2016
Nycticorax nycticorax	Black-crowned night- heron		<u>SC</u>	<u>G5</u>	<u>S3</u>	1	2006
Obliquaria reflexa	Threehorn wartyback		Ë	<u>G5</u>	<u>S1</u>	5	2019
Obovaria olivaria	Hickorynut		E.	<u>G4</u>	<u>S1</u>	18	2020
Obovaria subrotunda	Round hickorynut	LT	Ë	<u>G3</u>	<u>S1</u>	11	2019
Opsopoeodus emiliae	Pugnose minnow		Ë	<u>G5</u>	<u>S1</u>	4	1986
Paetulunio fabalis	Rayed bean	LE	Ë	<u>G2</u>	<u>\$1\$2</u>	6	2019
Panax quinquefolius	Ginseng		.T.	<u>G3G4</u>	<u>S2S3</u>	4	2008
Pandion haliaetus	Osprey		SC	<u>G5</u>	<u>S4</u>	7	2020
Pantherophis gloydi	Eastern fox snake		.T.	<u>G3</u>	<u>\$2</u>	14	2022
Papaipema beeriana	Blazing star borer		<u>SC</u>	<u>G3?</u>	<u>S2</u>	4	2023
Papaipema sciata	Culvers root borer		.T.	<u>G2G3</u>	<u>S3</u>	1	2022
Papaipema speciosissima	Regal fern borer		SC	<u>G3G4</u>	<u>S2S3</u>	1	2023
Paroxya hoosieri	Hoosier locust		<u>SC</u>	<u>G5</u>	S1S3	1	1913
Patera pennsylvanica	Proud globelet		<u>SC</u>	<u>G4</u>	SNR	2	Historical

Scientific Name	Common Name	Federal Status	State Status	Global Rank	State Rank	Occurrences in County	Last Observed in County
Penstemon pallidus	Pale beard tongue		Х	<u>G5</u>	<u>SX</u>	2	1939
Percina copelandi	Channel darter		E.	<u>G4</u>	<u>S1</u>	5	1952
Percina shumardi	River darter		E.	<u>G5</u>	<u>S1</u>	1	1941
Phaseolus polystachios	Wild bean		Х	<u>G5</u>	<u>SX</u>	1	1896
Pisidium simplex	A fingernail clam		<u>SC</u>	<u>G5</u>	SNR	1	1998
Platanthera leucophaea	Prairie white-fringed orchid	L.T.	Æ	<u>G2G3</u>	<u>S1</u>	1	2016
Pleurobema sintoxia	Round pigtoe		<u>SC</u>	<u>G4G5</u>	<u>S3</u>	14	2019
Polygala cruciata	Cross-leaved milkwort		<u>SC</u>	<u>G5</u>	<u>S3</u>	1	1991
Pomatiopsis cincinnatiensis	Brown walker		<u>SC</u>	<u>G4</u>	SH	1	Historical
Potamilus alatus	Pink heelsplitter		SC	<u>G5</u>	SNR	27	2020
Potentilla supina	Sand cinquefoil		.T.	<u>G5</u>	<u>SH</u>	1	1949
Prenanthes crepidinea	Nodding rattlesnake- root		.Т.	<u>G4</u>	SNR	1	2023
Prosartes maculata	Nodding mandarin		Х	<u>G4</u>	SX	1	1922
Protonotaria citrea	Prothonotary warbler		<u>SC</u>	<u>G5</u>	<u>S3</u>	1	2006
Ptychobranchus fasciolaris	Kidney shell		<u>SC</u>	<u>G4G5</u>	<u>S2</u>	23	2019
Pycnanthemum verticillatum	Whorled mountain mint		<u>SC</u>	<u>G5</u>	<u>.S2</u>	1	1973
Quercus shumardii	Shumard's oak		<u>SC</u>	<u>G5</u>	<u>S2</u>	5	2015
Rallus elegans	King rail		E.	<u>G4</u>	<u>S2</u>	1	1986
Rhexia virginica	Meadow beauty		<u>SC</u>	<u>G5</u>	<u>S3</u>	2	1994
Ruellia humilis	Hairy wild petunia		.T.	<u>G5</u>	<u>S1</u>	1	1931
Sagittaria montevidensis	Arrowhead		.Т.	<u>G5</u>	<u>S1S2</u>	3	1988
Sagittunio nasutus	Eastern pondmussel		Ë	<u>G4</u>	<u>\$2</u>	28	2019
Sander canadensis	Sauger		E.	<u>G5</u>	<u>S1</u>	3	1993
Sanguisorba canadensis	Canadian burnet		Ë	<u>G5</u>	<u>S1</u>	1	1923
Scleria pauciflora	Few-flowered nut rush		Ë	<u>G5</u>	<u>\$1</u>	1	1995
Scleria triglomerata	Tall nut rush		<u>SC</u>	<u>G5</u>	<u>S3</u>	4	1994
Setophaga cerulea	Cerulean warbler		.Т.	<u>G4</u>	<u>S3</u>	1	2009
Setophaga citrina	Hooded warbler		SC	<u>G5</u>	<u>S</u> 3	1	2006
Silene virginica	Fire pink		Ë	<u>G5</u>	<u>\$1</u>	2	1917
Silphium laciniatum	Compass plant		Ē	<u>G5</u>	<u>S1S2</u>	2	2002

Scientific Name	Common Name	Federal Status	State Status	Global Rank	State Rank	Occurrences in County	Last Observed in County
Silphium perfoliatum	Cup plant		.T.	<u>G5</u>	<u>S2</u>	12	2017
Simpsonaias ambigua	Salamander mussel		Ë	<u>G1G2</u>	<u>S1</u>	2	1998
Sistrurus catenatus	Eastern massasauga	L.T.	.T.	<u>G3</u>	<u>S3</u>	1	1858
Smilax herbacea	Smooth carrion-flower		<u>SC</u>	<u>G5</u>	<u>S3</u>	1	1896
Speyeria idalia	Regal fritillary		Х	<u>G3?</u>	SH	1	1931
Spiranthes ovalis	Lesser ladies'-tresses		<u>SC</u>	<u>G5?</u>	<u>S1</u>	1	2015
Spiza americana	Dickcissel		<u>SC</u>	<u>G5</u>	<u>S3</u>	2	2005
Sterna forsteri	Forster's tern		.Т.	<u>G5</u>	<u>S2</u>	1	1985
Sterna hirundo	Common tern		.T.	<u>G5</u>	<u>S2</u>	6	2009
Strophostyles helvula	Trailing wild bean		<u>SC</u>	<u>G5</u>	<u>S3</u>	4	2014
Stylurus laurae	Laura's snaketail		SC	<u>G4</u>	<u>S</u> 3	1	1933
Stylurus notatus	Elusive snaketail		.T.	<u>G3</u>	<u>S1S2</u>	1	2010
Stylurus plagiatus	Russet-tipped clubtail		E	<u>G5</u>	<u>S1</u>	2	2015
Symphyotrichum praealtum	Willow aster		<u>SC</u>	<u>G5</u>	<u>S3</u>	1	2011
Thalictrum pubescens	Tall meadowrue		<u>SC</u>	<u>G5</u>	SNR	1	1931
Thamnophis butleri	Butler's garter snake		<u>SC</u>	<u>G4</u>	<u>S4</u>	3	2021
Toxolasma parvum	Lilliput		Æ	<u>G5</u>	<u>S1</u>	10	2018
Trichophorum clintonii	Clinton's bulrush		<u>SC</u>	<u>G4</u>	<u>S3</u>	2	1994
Trillium recurvatum	Prairie trillium		SC	<u>G5</u>	<u> S2S3</u>	1	1905
Truncilla donaciformis	Fawnsfoot		E.	<u>G5</u>	<u>S1</u>	3	2008
Truncilla truncata	Deertoe		<u>SC</u>	<u>G5</u>	<u>S2S3</u>	12	2019
Utterbackia imbecillis	Paper pondshell		<u>SC</u>	<u>G5</u>	<u>S2S3</u>	5	2011
Wisteria frutescens	Wisteria		.T.	<u>G5</u>	<u>S1</u>	1	2003
Zizania aquatica	Wild rice		.T.	<u>G5</u>	<u>S2S3</u>	4	2014

Natural Communities

Community Name	Global Rank	State Rank	Occurrences in County	Last Observed in County
Floodplain Forest	G3?	S3	1	2003
Great Lakes Marsh	G2	S3	2	2015
Lakeplain Oak Openings	G2?	S1	2	1994
Lakeplain Wet Prairie	G2	S1	2	2009

Community Name	Global Rank	State Rank	Occurrences in County	Last Observed in County
Lakeplain Wet-mesic Prairie	G1?	S1	3	1994
Mesic Sand Prairie	G2	S1	2	1994
Mesic Southern Forest	G2G3	S3	1	1981
Wet-mesic Flatwoods	G2G3	S2	4	2015

Call us: (517) 284-6200 Contact Information Site Map Privacy Statement Site Accessibility

Call MSU: (\$17) 355-1855 | Visit: msu.edu | MSU is an affirmative-action, equal-opportunity employer. | Notice of Nondiscrimination SPARTANS WILL. | ©Michigan State University

APPENDIX D: PUBLIC HEARING

NOTICE OF PUBLIC HEARING

Riverview Land Preserve Leachate Treatment Plant

The City of Riverview will hold a public hearing on a proposed project plan for a Riverview Land Preserve (RLP) Leachate Treatment Plant to address PFAS and other emerging pollutants. The hearing will be held in person at 6:00 p.m. on April 25, 2024, at the following location: Riverview City Hall, Council Chambers, 14100 Civic Park Drive, Riverview, MI 48193.

The proposed project plan will detail impacts to the environment, estimated costs and associated construction costs. The proposed project plan will be available for public viewing on the Riverview, Michigan (cityofriverview.com) homepage in "Public Notices" section and in person at the following locations: Riverview City Hall, 14100 Civic Park Drive, Riverview, MI 48193 and Riverview Veterans Memorial Library, 14300 Sibley Road, Riverview, MI 48193. Comments will be accepted beginning April 9, 2024. The public can comment on the project plan and ask questions. Public comment shall close on the project plan on April 25, 2024. All public comment will be considered by City of Riverview. The public may comment electronically to <u>TreatCommentsRLP@gmail.com</u>. Electronic comments should be directed to the Director of Solid Waste.

Comments in writing must be mailed to:

Riverview Land Preserve Attn: Director of Solid Waste 20863 Grange Road Riverview, MI 48193